1
0
Fork 1
mirror of https://github.com/NixOS/nixpkgs.git synced 2025-01-22 14:45:27 +00:00
nixpkgs/doc/languages-frameworks/beam.section.md
2021-08-31 12:00:47 +09:00

15 KiB

BEAM Languages (Erlang, Elixir & LFE)

Introduction

In this document and related Nix expressions, we use the term, BEAM, to describe the environment. BEAM is the name of the Erlang Virtual Machine and, as far as we're concerned, from a packaging perspective, all languages that run on the BEAM are interchangeable. That which varies, like the build system, is transparent to users of any given BEAM package, so we make no distinction.

Available versions and deprecations schedule

Elixir

nixpkgs follows the official elixir deprecation schedule and keeps the last 5 released versions of Elixir available.

Structure

All BEAM-related expressions are available via the top-level beam attribute, which includes:

  • interpreters: a set of compilers running on the BEAM, including multiple Erlang/OTP versions (beam.interpreters.erlangR22, etc), Elixir (beam.interpreters.elixir) and LFE (Lisp Flavoured Erlang) (beam.interpreters.lfe).

  • packages: a set of package builders (Mix and rebar3), each compiled with a specific Erlang/OTP version, e.g. beam.packages.erlang22.

The default Erlang compiler, defined by beam.interpreters.erlang, is aliased as erlang. The default BEAM package set is defined by beam.packages.erlang and aliased at the top level as beamPackages.

To create a package builder built with a custom Erlang version, use the lambda, beam.packagesWith, which accepts an Erlang/OTP derivation and produces a package builder similar to beam.packages.erlang.

Many Erlang/OTP distributions available in beam.interpreters have versions with ODBC and/or Java enabled or without wx (no observer support). For example, there's beam.interpreters.erlangR22_odbc_javac, which corresponds to beam.interpreters.erlangR22 and beam.interpreters.erlangR22_nox, which corresponds to beam.interpreters.erlangR22.

Build Tools

Rebar3

We provide a version of Rebar3, under rebar3. We also provide a helper to fetch Rebar3 dependencies from a lockfile under fetchRebar3Deps.

We also provide a version on Rebar3 with plugins included, under rebar3WithPlugins. This package is a function which takes two arguments: plugins, a list of nix derivations to include as plugins (loaded only when specified in rebar.config), and globalPlugins, which should always be loaded by rebar3. Example: rebar3WithPlugins { globalPlugins = [beamPackages.pc]; }.

When adding a new plugin it is important that the packageName attribute is the same as the atom used by rebar3 to refer to the plugin.

Mix & Erlang.mk

Erlang.mk works exactly as expected. There is a bootstrap process that needs to be run, which is supported by the buildErlangMk derivation.

For Elixir applications use mixRelease to make a release. See examples for more details.

There is also a buildMix helper, whose behavior is closer to that of buildErlangMk and buildRebar3. The primary difference is that mixRelease makes a release, while buildMix only builds the package, making it useful for libraries and other dependencies.

How to Install BEAM Packages

BEAM builders are not registered at the top level, simply because they are not relevant to the vast majority of Nix users. To install any of those builders into your profile, refer to them by their attribute path beamPackages.rebar3:

$ nix-env -f "<nixpkgs>" -iA beamPackages.rebar3

Packaging BEAM Applications

Erlang Applications

Rebar3 Packages

The Nix function, buildRebar3, defined in beam.packages.erlang.buildRebar3 and aliased at the top level, can be used to build a derivation that understands how to build a Rebar3 project.

If a package needs to compile native code via Rebar3's port compilation mechanism, add compilePort = true; to the derivation.

Erlang.mk Packages

Erlang.mk functions similarly to Rebar3, except we use buildErlangMk instead of buildRebar3.

Mix Packages

mixRelease is used to make a release in the mix sense. Dependencies will need to be fetched with fetchMixDeps and passed to it.

mixRelease - Elixir Phoenix example

there are 3 steps, frontend dependencies (javascript), backend dependencies (elixir) and the final derivation that puts both of those together

mixRelease - Frontend dependencies (javascript)

for phoenix projects, inside of nixpkgs you can either use yarn2nix (mkYarnModule) or node2nix. An example with yarn2nix can be found here. An example with node2nix will follow. To package something outside of nixpkgs, you have alternatives like npmlock2nix or nix-npm-buildpackage

mixRelease - backend dependencies (mix)

There are 2 ways to package backend dependencies. With mix2nix and with a fixed-output-derivation (FOD).

mix2nix

mix2nix is a cli tool available in nixpkgs. it will generate a nix expression from a mix.lock file. It is quite standard in the 2nix tool series.

Note that currently mix2nix can't handle git dependencies inside the mix.lock file. If you have git dependencies, you can either add them manually (see example) or use the FOD method.

The advantage of using mix2nix is that nix will know your whole dependency graph. On a dependency update, this won't trigger a full rebuild and download of all the dependencies, where FOD will do so.

practical steps:

  • run mix2nix > mix_deps.nix in the upstream repo.
  • pass mixNixDeps = with pkgs; import ./mix_deps.nix { inherit lib beamPackages; }; as an argument to mixRelease.

If there are git depencencies.

  • You'll need to fix the version artificially in mix.exs and regenerate the mix.lock with fixed version (on upstream). This will enable you to run mix2nix > mix_deps.nix.
  • From the mix_deps.nix file, remove the dependencies that had git versions and pass them as an override to the import function.
  mixNixDeps = import ./mix.nix {
    inherit beamPackages lib;
    overrides = (final: prev: {
      # mix2nix does not support git dependencies yet,
      # so we need to add them manually
      prometheus_ex = beamPackages.buildMix rec {
        name = "prometheus_ex";
        version = "3.0.5";

        # Change the argument src with the git src that you actually need
        src = fetchFromGitLab {
          domain = "git.pleroma.social";
          group = "pleroma";
          owner = "elixir-libraries";
          repo = "prometheus.ex";
          rev = "a4e9beb3c1c479d14b352fd9d6dd7b1f6d7deee5";
          sha256 = "1v0q4bi7sb253i8q016l7gwlv5562wk5zy3l2sa446csvsacnpjk";
        };
        # you can re-use the same beamDeps argument as generated
        beamDeps = with final; [ prometheus ];
      };
  });
};

You will need to run the build process once to fix the sha256 to correspond to your new git src.

FOD

A fixed output derivation will download mix dependencies from the internet. To ensure reproducibility, a hash will be supplied. Note that mix is relatively reproducible. An FOD generating a different hash on each run hasn't been observed (as opposed to npm where the chances are relatively high). See elixir_ls for a usage example of FOD.

Practical steps

  • start with the following argument to mixRelease
  mixFodDeps = fetchMixDeps {
    pname = "mix-deps-${pname}";
    inherit src version;
    sha256 = lib.fakeSha256;
  };

The first build will complain about the sha256 value, you can replace with the suggested value after that.

Note that if after you've replaced the value, nix suggests another sha256, then mix is not fetching the dependencies reproducibly. An FOD will not work in that case and you will have to use mix2nix.

mixRelease - example

Here is how your default.nix file would look for a phoenix project.

with import <nixpkgs> { };

let
  # beam.interpreters.erlangR23 is available if you need a particular version
  packages = beam.packagesWith beam.interpreters.erlang;

  pname = "your_project";
  version = "0.0.1";

  src = builtins.fetchgit {
    url = "ssh://git@github.com/your_id/your_repo";
    rev = "replace_with_your_commit";
  };

  # if using mix2nix you can use the mixNixDeps attribute
  mixFodDeps = packages.fetchMixDeps {
    pname = "mix-deps-${pname}";
    inherit src version;
    # nix will complain and tell you the right value to replace this with
    sha256 = lib.fakeSha256;
    # if you have build time environment variables add them here
    MY_ENV_VAR="my_value";
  };

  nodeDependencies = (pkgs.callPackage ./assets/default.nix { }).shell.nodeDependencies;

in packages.mixRelease {
  inherit src pname version mixFodDeps;
  # if you have build time environment variables add them here
  MY_ENV_VAR="my_value";

  postBuild = ''
    ln -sf ${nodeDependencies}/lib/node_modules assets/node_modules
    npm run deploy --prefix ./assets

    # for external task you need a workaround for the no deps check flag
    # https://github.com/phoenixframework/phoenix/issues/2690
    mix do deps.loadpaths --no-deps-check, phx.digest
    mix phx.digest --no-deps-check
  '';
}

Setup will require the following steps:

  • Move your secrets to runtime environment variables. For more information refer to the runtime.exs docs. On a fresh Phoenix build that would mean that both DATABASE_URL and SECRET_KEY need to be moved to runtime.exs.
  • cd assets and nix-shell -p node2nix --run node2nix --development will generate a Nix expression containing your frontend dependencies
  • commit and push those changes
  • you can now nix-build .
  • To run the release, set the RELEASE_TMP environment variable to a directory that your program has write access to. It will be used to store the BEAM settings.

Example of creating a service for an Elixir - Phoenix project

In order to create a service with your release, you could add a service.nix in your project with the following

{config, pkgs, lib, ...}:

let
  release = pkgs.callPackage ./default.nix;
  release_name = "app";
  working_directory = "/home/app";
in
{
  systemd.services.${release_name} = {
    wantedBy = [ "multi-user.target" ];
    after = [ "network.target" "postgresql.service" ];
    # note that if you are connecting to a postgres instance on a different host
    # postgresql.service should not be included in the requires.
    requires = [ "network-online.target" "postgresql.service" ];
    description = "my app";
    environment = {
      # RELEASE_TMP is used to write the state of the
      # VM configuration when the system is running
      # it needs to be a writable directory
      RELEASE_TMP = working_directory;
      # can be generated in an elixir console with
      # Base.encode32(:crypto.strong_rand_bytes(32))
      RELEASE_COOKIE = "my_cookie";
      MY_VAR = "my_var";
    };
    serviceConfig = {
      Type = "exec";
      DynamicUser = true;
      WorkingDirectory = working_directory;
      # Implied by DynamicUser, but just to emphasize due to RELEASE_TMP
      PrivateTmp = true;
      ExecStart = ''
        ${release}/bin/${release_name} start
      '';
      ExecStop = ''
        ${release}/bin/${release_name} stop
      '';
      ExecReload = ''
        ${release}/bin/${release_name} restart
      '';
      Restart = "on-failure";
      RestartSec = 5;
      StartLimitBurst = 3;
      StartLimitInterval = 10;
    };
    # disksup requires bash
    path = [ pkgs.bash ];
  };

  # in case you have migration scripts or you want to use a remote shell
  environment.systemPackages = [ release ];
}

How to Develop

Creating a Shell

Usually, we need to create a shell.nix file and do our development inside of the environment specified therein. Just install your version of Erlang and any other interpreters, and then use your normal build tools. As an example with Elixir:

{ pkgs ? import <nixpkgs> {} }:

with pkgs;
let
  elixir = beam.packages.erlangR24.elixir_1_12;
in
mkShell {
  buildInputs = [ elixir ];
}

Elixir - Phoenix project

Here is an example shell.nix.

with import <nixpkgs> { };

let
  # define packages to install
  basePackages = [
    git
    # replace with beam.packages.erlang.elixir_1_11 if you need
    beam.packages.erlang.elixir
    nodejs
    postgresql_13
    # only used for frontend dependencies
    # you are free to use yarn2nix as well
    nodePackages.node2nix
    # formatting js file
    nodePackages.prettier
  ];

  inputs = basePackages ++ lib.optionals stdenv.isLinux [ inotify-tools ]
    ++ lib.optionals stdenv.isDarwin
    (with darwin.apple_sdk.frameworks; [ CoreFoundation CoreServices ]);

  # define shell startup command
  hooks = ''
    # this allows mix to work on the local directory
    mkdir -p .nix-mix .nix-hex
    export MIX_HOME=$PWD/.nix-mix
    export HEX_HOME=$PWD/.nix-mix
    export PATH=$MIX_HOME/bin:$HEX_HOME/bin:$PATH
    # TODO: not sure how to make hex available without installing it afterwards.
    mix local.hex --if-missing
    export LANG=en_US.UTF-8
    # keep your shell history in iex
    export ERL_AFLAGS="-kernel shell_history enabled"

    # postges related
    # keep all your db data in a folder inside the project
    export PGDATA="$PWD/db"

    # phoenix related env vars
    export POOL_SIZE=15
    export DB_URL="postgresql://postgres:postgres@localhost:5432/db"
    export PORT=4000
    export MIX_ENV=dev
    # add your project env vars here, word readable in the nix store.
    export ENV_VAR="your_env_var"
  '';

in mkShell {
  buildInputs = inputs;
  shellHook = hooks;
}

Initializing the project will require the following steps:

  • create the db directory initdb ./db (inside your mix project folder)
  • create the postgres user createuser postgres -ds
  • create the db createdb db
  • start the postgres instance pg_ctl -l "$PGDATA/server.log" start
  • add the /db folder to your .gitignore
  • you can start your phoenix server and get a shell with iex -S mix phx.server