1
0
Fork 1
mirror of https://github.com/NixOS/nixpkgs.git synced 2024-12-01 10:00:56 +00:00
nixpkgs/pkgs/development/python-modules/tensorflow/default.nix
Jean-Philippe Bernardy 1fdf42d461 pythonPackages.tensorflow: Don't change the rpath to point to gcc4.9
When using cuda, the rpath was set to include GCC lib version 4.9.
I am not sure what this was attempting to do, but an effect was to
prevent certain python libraries to find the correct (newer) version
of the std lib.

Also avoid mentions of any specifc version in the
propagatedBuildInputs
2017-05-30 11:06:19 +02:00

126 lines
3.5 KiB
Nix

{ stdenv
, fetchurl
, buildPythonPackage
, isPy35, isPy27
, cudaSupport ? false
, cudatoolkit ? null
, cudnn ? null
, linuxPackages ? null
, numpy
, six
, protobuf3_2
, swig
, werkzeug
, mock
, zlib
}:
assert cudaSupport -> cudatoolkit != null
&& cudnn != null
&& linuxPackages != null;
# unsupported combination
assert ! (stdenv.isDarwin && cudaSupport);
# tensorflow is built from a downloaded wheel, because the upstream
# project's build system is an arcane beast based on
# bazel. Untangling it and building the wheel from source is an open
# problem.
buildPythonPackage rec {
pname = "tensorflow";
version = "1.1.0";
name = "${pname}-${version}";
format = "wheel";
disabled = ! (isPy35 || isPy27);
src = let
tfurl = sys: proc: pykind:
let
tfpref = if proc == "gpu"
then "gpu/tensorflow_gpu"
else "cpu/tensorflow";
in
"https://storage.googleapis.com/tensorflow/${sys}/${tfpref}-${version}-${pykind}.whl";
dls =
{
darwin.cpu = {
py2 = {
url = tfurl "mac" "cpu" "py2-none-any" ;
sha256 = "1fgf26lw0liqxc9pywc8y2mj8l1mv48nhkav0pag9vavdacb9mqr";
};
py3 = {
url = tfurl "mac" "cpu" "py3-none-any" ;
sha256 = "0z5p1fra7bih0vqn618i2w3vyy8d1rkc72k7bmjq0rw8msl717ia";
};
};
linux-x86_64.cpu = {
py2 = {
url = tfurl "linux" "cpu" "cp27-none-linux_x86_64";
sha256 = "0ld3hqx3idxk0zcrvn3p9yqnmx09zsj3mw66jlfw6fkv5hznx8j2";
};
py3 = {
url = tfurl "linux" "cpu" "cp35-cp35m-linux_x86_64";
sha256 = "0ahz9222rzqrk43lb9w4m351klkm6mlnnvw8xfqip28vbmymw90b";
};
};
linux-x86_64.cuda = {
py2 = {
url = tfurl "linux" "gpu" "cp27-none-linux_x86_64";
sha256 = "1baa9jwr6f8f62dyx6isbw8yyrd0pi1dz1srjblfqsyk1x3pnfvh";
};
py3 = {
url = tfurl "linux" "gpu" "cp35-cp35m-linux_x86_64";
sha256 = "0606m2awy0ifhniy8lsyhd0xc388dgrwksn87989xlgy90wpxi92";
};
};
};
in
fetchurl (
if stdenv.isDarwin then
if isPy35 then
dls.darwin.cpu.py3
else
dls.darwin.cpu.py2
else if isPy35 then
if cudaSupport then
dls.linux-x86_64.cuda.py3
else dls.linux-x86_64.cpu.py3
else
if cudaSupport then
dls.linux-x86_64.cuda.py2
else
dls.linux-x86_64.cpu.py2
);
propagatedBuildInputs = with stdenv.lib;
[ numpy six protobuf3_2 swig werkzeug mock ]
++ optionals cudaSupport [ cudatoolkit cudnn stdenv.cc ];
# Note that we need to run *after* the fixup phase because the
# libraries are loaded at runtime. If we run in preFixup then
# patchelf --shrink-rpath will remove the cuda libraries.
postFixup = let
rpath = stdenv.lib.makeLibraryPath
(if cudaSupport then
[ stdenv.cc.cc.lib zlib cudatoolkit cudnn
linuxPackages.nvidia_x11 ]
else
[ stdenv.cc.cc.lib zlib ]
);
in
''
find $out -name '*.so' -exec patchelf --set-rpath "${rpath}" {} \;
'';
doCheck = false;
meta = with stdenv.lib; {
description = "TensorFlow helps the tensors flow";
homepage = http://tensorflow.org;
license = licenses.asl20;
maintainers = with maintainers; [ jpbernardy ];
platforms = with platforms; if cudaSupport then linux else linux ++ darwin;
};
}