1
0
Fork 1
mirror of https://github.com/NixOS/nixpkgs.git synced 2024-12-25 03:17:13 +00:00
nixpkgs/pkgs/applications/science/math/caffe/default.nix
Matthew Bauer 1c8aba8334 treewide: use blas and lapack
This makes packages use lapack and blas, which can wrap different
BLAS/LAPACK implementations.

treewide: cleanup from blas/lapack changes

A few issues in the original treewide:

- can’t assume blas64 is a bool
- unused commented code
2020-04-17 16:24:09 -05:00

143 lines
4.3 KiB
Nix

{ config, stdenv, lib
, fetchFromGitHub
, fetchurl
, cmake
, boost
, gflags
, glog
, hdf5-cpp
, opencv3
, protobuf
, doxygen
, blas
, Accelerate, CoreGraphics, CoreVideo
, lmdbSupport ? true, lmdb
, leveldbSupport ? true, leveldb, snappy
, cudaSupport ? config.cudaSupport or false, cudatoolkit
, cudnnSupport ? cudaSupport, cudnn ? null
, ncclSupport ? false, nccl ? null
, pythonSupport ? false, python ? null, numpy ? null
, substituteAll
}:
assert leveldbSupport -> (leveldb != null && snappy != null);
assert cudnnSupport -> cudaSupport;
assert ncclSupport -> cudaSupport;
assert pythonSupport -> (python != null && numpy != null);
let
toggle = bool: if bool then "ON" else "OFF";
test_model_weights = fetchurl {
url = "http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel";
sha256 = "472d4a06035497b180636d8a82667129960371375bd10fcb6df5c6c7631f25e0";
};
in
stdenv.mkDerivation rec {
pname = "caffe";
version = "1.0";
src = fetchFromGitHub {
owner = "BVLC";
repo = "caffe";
rev = version;
sha256 = "104jp3cm823i3cdph7hgsnj6l77ygbwsy35mdmzhmsi4jxprd9j3";
};
enableParallelBuilding = true;
nativeBuildInputs = [ cmake doxygen ];
cmakeFlags =
# It's important that caffe is passed the major and minor version only because that's what
# boost_python expects
[ (if pythonSupport then "-Dpython_version=${python.pythonVersion}" else "-DBUILD_python=OFF")
"-DBLAS=open"
] ++ (if cudaSupport then [
"-DCUDA_ARCH_NAME=All"
"-DCUDA_HOST_COMPILER=${cudatoolkit.cc}/bin/cc"
] else [ "-DCPU_ONLY=ON" ])
++ ["-DUSE_NCCL=${toggle ncclSupport}"]
++ ["-DUSE_LEVELDB=${toggle leveldbSupport}"]
++ ["-DUSE_LMDB=${toggle lmdbSupport}"];
buildInputs = [ boost gflags glog protobuf hdf5-cpp opencv3 blas ]
++ lib.optional cudaSupport cudatoolkit
++ lib.optional cudnnSupport cudnn
++ lib.optional lmdbSupport lmdb
++ lib.optional ncclSupport nccl
++ lib.optionals leveldbSupport [ leveldb snappy ]
++ lib.optionals pythonSupport [ python numpy ]
++ lib.optionals stdenv.isDarwin [ Accelerate CoreGraphics CoreVideo ]
;
propagatedBuildInputs = lib.optionals pythonSupport (
# requirements.txt
let pp = python.pkgs; in ([
pp.numpy pp.scipy pp.scikitimage pp.h5py
pp.matplotlib pp.ipython pp.networkx pp.nose
pp.pandas pp.dateutil pp.protobuf pp.gflags
pp.pyyaml pp.pillow pp.six
] ++ lib.optional leveldbSupport pp.leveldb)
);
outputs = [ "bin" "out" ];
propagatedBuildOutputs = []; # otherwise propagates out -> bin cycle
patches = [
./darwin.patch
] ++ lib.optional pythonSupport (substituteAll {
src = ./python.patch;
inherit (python.sourceVersion) major minor; # Should be changed in case of PyPy
});
postPatch = lib.optionalString (cudaSupport && lib.versionAtLeast cudatoolkit.version "9.0") ''
# CUDA 9.0 doesn't support sm_20
sed -i 's,20 21(20) ,,' cmake/Cuda.cmake
'';
preConfigure = lib.optionalString pythonSupport ''
# We need this when building with Python bindings
export BOOST_LIBRARYDIR="${boost.out}/lib";
'';
postInstall = ''
# Internal static library.
rm $out/lib/libproto.a
# Install models
cp -a ../models $out/share/Caffe/models
moveToOutput "bin" "$bin"
'' + lib.optionalString pythonSupport ''
mkdir -p $out/${python.sitePackages}
mv $out/python/caffe $out/${python.sitePackages}
rm -rf $out/python
'';
doInstallCheck = false; # build takes more than 30 min otherwise
installCheckPhase = ''
model=bvlc_reference_caffenet
m_path="$out/share/Caffe/models/$model"
$bin/bin/caffe test \
-model "$m_path/deploy.prototxt" \
-solver "$m_path/solver.prototxt" \
-weights "${test_model_weights}"
'';
meta = with stdenv.lib; {
description = "Deep learning framework";
longDescription = ''
Caffe is a deep learning framework made with expression, speed, and
modularity in mind. It is developed by the Berkeley Vision and Learning
Center (BVLC) and by community contributors.
'';
homepage = "http://caffe.berkeleyvision.org/";
maintainers = with maintainers; [ jb55 ];
license = licenses.bsd2;
platforms = platforms.linux ++ platforms.darwin;
};
}