ARM ABIs now have a float field. This is used as a fallback to lessen
our use of `platform.gcc.float`. I didn't know what the MIPs convention
is so I kept using `platform.gcc.float` in that case.
Assigning a list of 10 or more elements to an option having the type
`loaOf a` produces a configuration value that is not honoring the
order of the original list. This commit fixes this and a related issue
arising when 10 or more lists are merged into this type of option.
Without this change
(coercedTo str toInt int).check "foo"
would evaluate to true, even though
(coercedTo str toInt int).merge {} [{ value = "foo"; }]
will throw an error because "foo" can't be coerced to an int.
The commented-out configs are @shlevy's old known-good ones. I changed
them as needed to play nice with lib.systems.parse but did not test so
leaving them as comments for now.
As suggested in https://github.com/NixOS/nixpkgs/pull/39416#discussion_r183845745
the versioning attributes in `lib` should be consistent to
`nixos/version` which implicates the following changes:
* `lib.trivial.version` -> `lib.trivial.release`
* `lib.trivial.suffix` -> `lib.trivial.versionSuffix`
* `lib.nixpkgsVersion` -> `lib.version`
As `lib.nixpkgsVersion` is referenced several times in `NixOS/nixpkgs`,
`NixOS/nix` and probably several user's setups. As the rename will cause
a notable impact it's better to keep `lib.nixpkgsVersion` as alias with
a warning yielded by `builtins.trace`.
The function isn’t used anywhere and `addErrorContext` is an undocumented
builtin.
The builtin is explicitely qualified at its two uses in the module system.
`attrNamesToStr` is very specific (and pretty trivial), so it doesn’t make sense
to have it in the library.
`traceXMLVal(Marked)` are just a builtin and `trace` and not very useful in
general (trace output should not be parsed anyway).
Following legacy packing conventions, `isArm` was defined just for
32-bit ARM instruction set. This is confusing to non packagers though,
because Aarch64 is an ARM instruction set.
The official ARM overview for ARMv8[1] is surprisingly not confusing,
given the overall state of affairs for ARM naming conventions, and
offers us a solution. It divides the nomenclature into three levels:
```
ISA: ARMv8 {-A, -R, -M}
/ \
Mode: Aarch32 Aarch64
| / \
Encoding: A64 A32 T32
```
At the top is the overall v8 instruction set archicture. Second are the
two modes, defined by bitwidth but differing in other semantics too, and
buttom are the encodings, (hopefully?) isomorphic if they encode the
same mode.
The 32 bit encodings are mostly backwards compatible with previous
non-Thumb and Thumb encodings, and if so we can pun the mode names to
instead mean "sets of compatable or isomorphic encodings", and then
voilà we have nice names for 32-bit and 64-bit arm instruction sets
which do not use the word ARM so as to not confused either laymen or
experienced ARM packages.
[1]: https://developer.arm.com/products/architecture/a-profile
(cherry picked from commit ba52ae5048)
Following legacy packing conventions, `isArm` was defined just for
32-bit ARM instruction set. This is confusing to non packagers though,
because Aarch64 is an ARM instruction set.
The official ARM overview for ARMv8[1] is surprisingly not confusing,
given the overall state of affairs for ARM naming conventions, and
offers us a solution. It divides the nomenclature into three levels:
```
ISA: ARMv8 {-A, -R, -M}
/ \
Mode: Aarch32 Aarch64
| / \
Encoding: A64 A32 T32
```
At the top is the overall v8 instruction set archicture. Second are the
two modes, defined by bitwidth but differing in other semantics too, and
buttom are the encodings, (hopefully?) isomorphic if they encode the
same mode.
The 32 bit encodings are mostly backwards compatible with previous
non-Thumb and Thumb encodings, and if so we can pun the mode names to
instead mean "sets of compatable or isomorphic encodings", and then
voilà we have nice names for 32-bit and 64-bit arm instruction sets
which do not use the word ARM so as to not confused either laymen or
experienced ARM packages.
[1]: https://developer.arm.com/products/architecture/a-profile