This enables the bootstrap stdenv test to specify the actual llvm
of the newly generated build instread of assuming it's the same version
as the current stdenv.
Changes to llvmPackages have caused the `libclang-cpp*.dylib` files to
be included in the `clang-unwrapped.lib` output. So we no longer need to
copy them from libclang.
`TargetConditionals.h` was missing several definitions, like
`TARGET_OS_TV` that are part of SDK 10.12 at least. And one that doesn't
seem to occur in any SDK afaict, `TARGET_OS_EMBEDDED_OTHER`.
I added the definitions from SDK 10.12 verbatim and defined
`TARGET_OS_EMBEDDED_OTHER` to be equal to `0`.
This is a modified version of a patch to avoid a stdenv rebuild.
I was having a hard time testing new bootstrapFiles because
`make-bootstrap-tools.nix` imports `pkgspath` but does not pass anything
but the current system.
This is merely for convenience and I'm not entirely certain it's a
sensible thing to do, maybe generating new bootstrapFiles while
overriding the current bootstrapFiles isn't something you're supposed to
do?
The rpath structure for the bootstrap tools was reworked to minimize
the amount of rewriting required on unpack, but the test was not
updated to match the different structure.
Additionally [1] builds that use the bootstrap version of libc++
cannot find libc++abi if the reference includes the "lib"
component (ie, libc++ refers to libc++abi with
@rpath/lib/libc++abi.dylib).
[1] https://logs.nix.samueldr.com/nix-darwin/2021-05-18#4993282
Test failure observed on Hydra: https://hydra.nixos.org/build/143130126
If things build fine with `stdenvNoCC`, let them use that. If tools
might be prefixed, prepare for that, either by directly splicing or just
using the env vars provided by the wrapper setup-hooks.
Co-authored-by: Dmitry Kalinkin <dmitry.kalinkin@gmail.com>
I am taking the non-invasive parts of #110914 to hopefully help out with #111988.
In particular:
- Use `lib.makeScopeWithSplicing` to make the `darwin` package set have
a proper `callPackage`.
- Adjust Darwin `stdenv`'s overlays keeping things from the previous
stage to not stick around too much.
- Expose `binutilsNoLibc` / `darwin.binutilsNoLibc` to hopefully get us
closer to a unified LLVM and GCC bootstrap.
Also begin to start work on cross compilation, though that will have to
be finished later.
The patches are based on the first version of
https://reviews.llvm.org/D99484. It's very annoying to do the
back-porting but the review has uncovered nothing super major so I'm
fine sticking with what I've got.
Beyond making the outputs work, I also strove to re-sync the packages,
as they have been drifting pointlessly apart for some time.
----
Other misc notes, highly incomplete
- lvm-config-native and llvm-config are put in `dev` because they are
tools just for build time.
- Clang no longer has an lld dep. That was introduced in
db29857eb3, but if clang needs help
finding lld when it is used we should just pass it flags / put in the
resource dir. Providing it at build time increases critical path
length for no good reason.
----
A note on `nativeCC`:
`stdenv` takes tools from the previous stage, so:
1. `pkgsBuildBuild`: `(?1, x, x)`
2. `pkgsBuildBuild.stdenv.cc`: `(?0, ?1, x)`
while:
1. `pkgsBuildBuild`: `(?1, x, x)`
2. `pkgsBuildBuild.targetPackages`: `(x, x, ?2)`
3. `pkgsBuildBuild.targetPackages.stdenv.cc`: `(?1, x, x)`
Patch every `derivation` call in the bootsrap process to add it a
conditional `__contentAddressed` parameter.
That way, passing `contentAddressedByDefault` means that the entire
build closure of a system can be content addressed
Build the llvm support libraries (libcxx, libcxxabi) from scratch
without using the existing llvm libraries. This is the same spirit and
similar implementation as the "useLLVM" bootstrap in llvm package
sets. Critically it avoids having libcxxabi provided by the cc-wrapper
when building libcxx, which otherwise results in two libcxxabi
instances.
$ otool -L /nix/store/vd4vvgs9xngqbjzpg3qc41wl6jh42s9i-libc++-7.1.0/lib/libc++.dylib
/nix/store/vd4vvgs9xngqbjzpg3qc41wl6jh42s9i-libc++-7.1.0/lib/libc++.dylib:
/nix/store/vd4vvgs9xngqbjzpg3qc41wl6jh42s9i-libc++-7.1.0/lib/libc++.1.0.dylib (compatibility version 1.0.0, current version 1.0.0)
/nix/store/gmpwk5fyp3iasppqrrdpswxvid6kcp8r-libc++abi-7.1.0/lib/libc++abi.dylib (compatibility version 1.0.0, current version 1.0.0)
/nix/store/3hn7azynqgp2pm5gpdg45gpq0ia72skg-libc++abi-7.1.0/lib/libc++abi.dylib (compatibility version 1.0.0, current version 1.0.0)
/nix/store/1nq94scbxs6bk7pimqhvz76q6cfmbv97-Libsystem-osx-10.12.6/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1226.10.1)
Additionally move some utilities (clang, binutils, coreutils, gnugrep)
to the stage layers so they can be replaced before the final
stdenv. This should cause most of stage4 to be built from the
toolchain assembled as of stage3 instead of the bootstrap toolchain.
This new version has tapi support, which is needed to build the new
stubs based libSystem, etc. and Big Sur support.
You can verify the provenance of these yourself by checking Hydra here:
https://hydra.nixos.org/build/128192471
This reverts commit c778945806.
I believe this is exactly what brings the staging branch into
the right shape after the last merge from master (through staging-next);
otherwise part of staging changes would be lost
(due to being already reachable from master but reverted).
The Rust `cc` crate started running `xcrun` when SDKROOT is defined:
a970b0ab0b
Consequently, building crates that use newer versions of the `cc`
crate fail, because xcrun is not available in pure build environments.
We can’t set this for cross-compiling since we use the GNU linker.
Instead, set these flags only when targetPlatform is macOS.
Fixes #80754
Fixes #83141
Fixes #21629
Passing these extra linker flags removes both the semi-random uuid
included in most binaries as well as making the sdk version consistent
instead of based on the current os version.
Load command 8
cmd LC_UUID
cmdsize 24
uuid 70FAF921-5DC8-371C-B814-4F121FADFDF4
Load command 9
cmd LC_VERSION_MIN_MACOSX
cmdsize 16
version 10.12
sdk 10.13
The -macosx_version_min flag isn't strictly necessary since that's
already handled by MACOSX_DEPLOYMENT_TARGET.
- Replaced python override from the final stdenv, instead we
propagate our bootstrap python to stage4 and override both
CF and xnu to use it.
- Removed CF argument from python interpreters, this is redundant
since it's not overidden anymore.
- Inherit CF from stage4, making it the same as the stdenv.
Adds the static overlay that can be used to build Nixpkgs statically.
Can be used like:
nix build pkgsStatic.hello
Not all packages build, as some rely on dynamic linking.
crossOverlays only apply to the packages being built, not the build
packages. It is useful when you don’t care what is used to build your
packages, just what is being built. The idea relies heavily on the
cross compiling infrastructure. Using this implies that we need to
create a cross stdenv.
02c09e0171 (NixOS/nixpkgs#44558) was reverted in
c981787db9 but, as it turns out, it fixed an issue
I didn't know about at the time: the values of `propagateDoc` options were
(and now again are) inconsistent with the underlying things those wrappers wrap
(see NixOS/nixpkgs#46119), which was (and now is) likely to produce more instances
of NixOS/nixpkgs#43547, if not now, then eventually as stdenv changes.
This patch (which is a simplified version of the original reverted patch) is the
simplest solution to this whole thing: it forces wrappers to directly inspect the
outputs of the things they are wrapping instead of making stdenv guess the correct
values.
This accidentally added some unwanted dependencies on the bootstrap
tools, and I don't have time to fix before I go on vacation, so I'm
backing it out until I have time to address it properly.
This reverts commit dc5c68a7bb.
LTO is disabled during bootstrap to keep the bootstrap tools small and
avoid unnecessary LLVM rebuilds, but is enabled in the final stdenv
stage and should be usable by normal packages.
This also updates the bootstrap tool builder to LLVM 5, but not the ones
we actually use for bootstrap. I'll make that change in a subsequent commit
so as to provide traceable provenance of the bootstrap tools.
On darwin llvmPackages is built using python-boot to avoid dependencies
in the stdenv, but we can't and shouldn't use that when building the
manpages since it depends on python packages.
* substitute(): --subst-var was silently coercing to "" if the variable does not exist.
* libffi: simplify using `checkInputs`
* pythonPackges.hypothesis, pythonPackages.pytest: simpify dependency cycle fix
* utillinux: 2.32 -> 2.32.1
https://lkml.org/lkml/2018/7/16/532
* busybox: 1.29.0 -> 1.29.1
* bind: 9.12.1-P2 -> 9.12.2
https://ftp.isc.org/isc/bind9/9.12.2/RELEASE-NOTES-bind-9.12.2.html
* curl: 7.60.0 -> 7.61.0
* gvfs: make tests run, but disable
* ilmbase: disable tests on i686. Spooky!
* mdds: fix tests
* git: disable checks as tests are run in installcheck
* ruby: disable tests
* libcommuni: disable checks as tests are run in installcheck
* librdf: make tests run, but disable
* neon, neon_0_29: make tests run, but disable
* pciutils: 3.6.0 -> 3.6.1
Semi-automatic update generated by https://github.com/ryantm/nixpkgs-update tools. This update was made based on information from https://repology.org/metapackage/pciutils/versions.
* mesa: more include fixes
mostly from void-linux (thanks!)
* npth: 1.5 -> 1.6
minor bump
* boost167: Add lockfree next_prior patch
* stdenv: cleanup darwin bootstrapping
Also gets rid of the full python and some of it's dependencies in the
stdenv build closure.
* Revert "pciutils: use standardized equivalent for canonicalize_file_name"
This reverts commit f8db20fb3a.
Patching should no longer be needed with 3.6.1.
* binutils-wrapper: Try to avoid adding unnecessary -L flags
(cherry picked from commit f3758258b8895508475caf83e92bfb236a27ceb9)
Signed-off-by: Domen Kožar <domen@dev.si>
* libffi: don't check on darwin
libffi usages in stdenv broken darwin. We need to disable doCheck for that case.
* "rm $out/share/icons/hicolor/icon-theme.cache" -> hicolor-icon-theme setup-hook
* python.pkgs.pytest: setupHook to prevent creation of .pytest-cache folder, fixes #40273
When `py.test` was run with a folder as argument, it would not only
search for tests in that folder, but also create a .pytest-cache folder.
Not only is this state we don't want, but it was also causing
collisions.
* parity-ui: fix after merge
* python.pkgs.pytest-flake8: disable test, fix build
* Revert "meson: 0.46.1 -> 0.47.0"
With meson 0.47.0 (or 0.47.1, or git)
things are very wrong re:rpath handling
resulting in at best missing libs but
even corrupt binaries :(.
When we run patchelf it masks the problem
by removing obviously busted paths.
Which is probably why this wasn't noticed immediately.
Unfortunately the binary already
has a long series of paths scribbled
in a space intended for a much smaller string;
in my testing it was something like
lengths were 67 with 300+ written to it.
I think we've reported the relevant issues upstream,
but unfortunately it appears our patches
are what introduces the overwrite/corruption
(by no longer being correct in what they assume)
This doesn't look so bad to fix but it's
not something I can spend more time on
at the moment.
--
Interestingly the overwritten string data
(because it is scribbled past the bounds)
remains in the binary and is why we're suddenly
seeing unexpected references in various builds
-- notably this is is the reason we're
seeing the "extra-utils" breakage
that entirely crippled NixOS on master
(and probably on staging before?).
Fixes #43650.
This reverts commit 305ac4dade.
(cherry picked from commit 273d68eff8)
Signed-off-by: Domen Kožar <domen@dev.si>
We already did them on non-mass-rebuild llvm 6. Also, this allows
simplifying the stdenv booting.
We were missing the libcxxabi dep in compile-rt in llvm 6, so fixed that
too.
It may seem nice and abstract to just override the default version, but
that breaks the alias relationship where the original llvmPackages_* is
no longer in sync. Put another away, modifying the referee rather
instead of breaking the reference "copy-on-write" is impossible.
Since at least d7bddc27b2, we've had a
situation where one should depend on:
- `stdenv.cc.bintools`: for executables at build time
- `libbfd` or `libiberty`: for those libraries
- `targetPackages.cc.bintools`: for exectuables at *run* time
- `binutils`: only for specifically GNU Binutils's executables,
regardless of the host platform, at run time.
and that commit cleaned up this usage to reflect that. This PR flips the
switch so that:
- `binutils` is indeed unconditionally GNU Binutils
- `binutils-raw`, which previously served that role, is gone.
so that the correct usage will be enforced going forward and everything
is simple.
N.B. In a few cases `binutils-unwrapped` (which before and now was
unconditionally actual GNU binutils), rather than `binutils` was used to
replace old `binutils-raw` as it is friendly towards some cross
compilation usage by avoiding a reference to the next bootstrapping
change.
For the cc of the intermediate stages, to be precise. Doing the same for
bintools requires lots of refactoring.
This is mainly for the future extensibility as now you can change
documentation generation with impunity without rebuilding the
whole of stdenv.