Looks like GRUB has issues loading EFI binaries from (cd0), which is
what would be used in e.g. qemu with OVMF with `-cdrom`. Apparently also
what is used with AArch64 + U-Boot USB.
The serial output (but it's named console, not serial actually) causes
issues on U-Boot's EFI, at the very least.
This is inspired by OpenSUSE's approach:
* https://build.opensuse.org/package/view_file/Base:System/grub2/grub2-SUSE-Add-the-t-hotkey.patch
Where they add a hidden menu entry, which can be used to force the
console output.
The `echo` will be visible on the serial terminal (grub "console"),
while the graphical interface is shown. Note that input in the serial
terminal (grub "console") will continue controlling the graphical
interface. Useful if you have an SBC connectedinto an HDMI monitor, but
no keyboard connected to it.
It was introduced in c10fe14 but removed in c4f910f.
It remained such that people with older generations in their boot
entries could still boot those. Given that the parameter hasn't had any
use in quite some years, it seems safe to remove now.
Fixes #60184
Minimal ISO:
1m21 -> 2m25
625M -> 617M
Plasma5 ISO:
2m45 -> 5m18
1.4G -> 1.3G
Decompression speed stays about the same. It's just a few seconds for the whole
image anyways and, with that kind of speed, you're going to be bottlenecked by
IO long before the CPU.
It's been 8.5 years since NixOS used mingetty, but the option was
never renamed (despite the file definining the module being renamed in
9f5051b76c ("Rename mingetty module to agetty")).
I've chosen to rename it to services.getty here, rather than
services.agetty, because getty is implemantation-neutral and also the
name of the unit that is generated.
As per the in-line comment, this is where distros should configure it.
Not via kernel command line parameters.
As found by looking at the implementation, while exploring the cause of
a bug on the Raspberry Pi 4, it was found that `cma=` on the command
line parameters will overwrite the values a device tree will have
configured for a given platform.
With this, the more recent 5.4 vendor kernel boots just fine on the
Raspberry Pi 4 using our common configuration.
This includes setting up everything for the mainline Raspberry Pi 4
image.
In fact, the only difference left in the Raspberry Pi 4-specific image
is the kernel from the vendor.
Prior to this commit, installation over serial console would requiring
manually having to modify the kernel modeline, as described in
https://github.com/NixOS/nixpkgs/issues/58198 .
This is unnecessarily fiddly, so this commit adds a syslinux boot
entry that has serial enabled.
GRUB already has a serial console entry:
2c07a0800a/nixos/modules/installer/cd-dvd/iso-image.nix (L311-L317)
Why 115200 bps? This is already used in other places, e.g. https://github.com/NixOS/nixpkgs/pull/58196
I tested this change by building the image, booting the image, and
observing the boot process over serial:
$ cd nixos/
$ nix-build -A config.system.build.isoImage -I nixos-config=modules/installer/cd-dvd/installation-cd-minimal.nix default.nix
$ sudo cp /nix/store/arcl702c3z8xlndlvnfplq9yhixjvs9k-nixos-20.09pre-git-x86_64-linux.iso/iso/nixos-20.09pre-git-x86_64-linux.iso /dev/sdb
$ picocom -b 115200 /dev/ttyUSB0
This allows to perform `dd if= of=$img` after the image is built
which is handy to add e.g. uBoot SPL to the built image.
Instructions for some ARM boards sometimes contain this step
that needs to be performed manually, with this patch it can be
part of the nix file used to built the image.
This should have been done initially, as otherwise it gets awfully
awkward to boot into new generations by default.
This system-specific image wasn't expected to be long-lived, thus why it
didn't end up being polished much.
Reality shows us we may be stuck with it for a bit longer, so let's make
it easier to use for new users.
we use stdenv.hostPlatform.uname.processor, which I believe is just like
`uname -p`.
Example values:
```
(import <nixpkgs> { system = "x86_64-linux"; }).stdenv.hostPlatform.uname.processor
"x86_64"
(import <nixpkgs> { system = "aarch64-linux"; }).stdenv.hostPlatform.uname.processor
aarch64
(import <nixpkgs> { system = "armv7l-linux"; }).stdenv.hostPlatform.uname.processor
"armv7l"
```
The volumeID will now be in the format of:
nixos-$EDITON-$RELEASE-$ARCH
an example for the minimal image would look like:
nixos-minimal-20.09-x86-64-linux