The `platform` field is pointless nesting: it's just stuff that happens
to be defined together, and that should be an implementation detail.
This instead makes `linux-kernel` and `gcc` top level fields in platform
configs. They join `rustc` there [all are optional], which was put there
and not in `platform` in anticipation of a change like this.
`linux-kernel.arch` in particular also becomes `linuxArch`, to match the
other `*Arch`es.
The next step after is this to combine the *specific* machines from
`lib.systems.platforms` with `lib.systems.examples`, keeping just the
"multiplatform" ones for defaulting.
When invoking a simple Ada program with `gcc` from `gnats10`, the
following warnings are shown:
```
$ gcc -c conftest.adb
gnat1: warning: command-line option ‘-Wformat=1’ is valid for C/C++/ObjC/ObjC++ but not for Ada
gnat1: warning: command-line option ‘-Wformat-security’ is valid for C/C++/ObjC/ObjC++ but not for Ada
gnat1: warning: ‘-Werror=’ argument ‘-Werror=format-security’ is not valid for Ada
$ echo $?
0
```
This is only spammy when compiling Ada programs inside a Nix derivation,
but certain configure scripts (such as the ./configure script from the
gcc that's built by coreboot's `make crossgcc` command) fail entirely
when getting that warning output.
https://nixos.wiki/wiki/Coreboot currently suggests manually running
> NIX_HARDENING_ENABLE="${NIX_HARDENING_ENABLE/ format/}" make crossgcc
… but actually teaching the nixpkgs-provided cc wrapper that `format`
isn't supported as a hardening flag seems to be the more canonical way
to do this in nixpgks.
After this, Ada programs still compile:
```
$ gcc -c conftest.adb
$ echo $?
0
```
And the compiler output is empty.
We need to set FC so that CMake and other tools can find the fortran
compiler. Also we need to limit the hardening flags since fortify and
format don’t work with fortran.
Fixes #88449
I hate the thing too even though I made it, and rather just get rid of
it. But we can't do that yet. In the meantime, this brings us more
inline with autoconf and will make it slightly easier for me to write a
pkg-config wrapper, which we need.
Regression introduced in PR #8119180729b6787. The file does not exist
somewhere during bootstrap of pkgsStatic.busybox which is used in nix
(by default).
I tested the builds.
If an empty string is passed to `-idirafter`, it breaks gcc. This commit makes
the stdenv less fragile by expanding out the shell glob and ensuring no empty
arguments get passed.
Before, we'd always use `cc = null`, and check for that. The problem is
this breaks for cross compilation to platforms that don't support a C
compiler.
It's a very subtle issue. One might think there is no problem because we
have `stdenvNoCC`, and presumably one would only build derivations that
use that. The problem is that one still wants to use tools at build-time
that are themselves built with a C compiler, and those are gotten via
"splicing". The runtime version of those deps will explode, but the
build time / `buildPackages` versions of those deps will be fine, and
splicing attempts to work this by using `builtins.tryEval` to filter out
any broken "higher priority" packages (runtime is the default and
highest priority) so that both `foo` and `foo.nativeDrv` works.
However, `tryEval` only catches certain evaluation failures (e.g.
exceptions), and not arbitrary failures (such as `cc.attr` when `cc` is
null). This means `tryEval` fails to let us use our build time deps, and
everything comes apart.
The right solution is, as usually, to get rid of splicing. Or, baring
that, to make it so `foo` never works and one has to explicitly do
`foo.*`. But that is a much larger change, and certaily one unsuitable
to be backported to stable.
Given that, we instead make an exception-throwing `cc` attribute, and
create a `hasCC` attribute for those derivations which wish to
condtionally use a C compiler: instead of doing `stdenv.cc or null ==
null` or something similar, one does `stdenv.hasCC`. This allows quering
without "tripping" the exception, while also allowing `tryEval` to work.
No platform without a C compiler is yet wired up by default. That will
be done in a following commit.