This enables the bootstrap stdenv test to specify the actual llvm
of the newly generated build instread of assuming it's the same version
as the current stdenv.
Changes to llvmPackages have caused the `libclang-cpp*.dylib` files to
be included in the `clang-unwrapped.lib` output. So we no longer need to
copy them from libclang.
`TargetConditionals.h` was missing several definitions, like
`TARGET_OS_TV` that are part of SDK 10.12 at least. And one that doesn't
seem to occur in any SDK afaict, `TARGET_OS_EMBEDDED_OTHER`.
I added the definitions from SDK 10.12 verbatim and defined
`TARGET_OS_EMBEDDED_OTHER` to be equal to `0`.
This is a modified version of a patch to avoid a stdenv rebuild.
I was having a hard time testing new bootstrapFiles because
`make-bootstrap-tools.nix` imports `pkgspath` but does not pass anything
but the current system.
This is merely for convenience and I'm not entirely certain it's a
sensible thing to do, maybe generating new bootstrapFiles while
overriding the current bootstrapFiles isn't something you're supposed to
do?
The rpath structure for the bootstrap tools was reworked to minimize
the amount of rewriting required on unpack, but the test was not
updated to match the different structure.
Additionally [1] builds that use the bootstrap version of libc++
cannot find libc++abi if the reference includes the "lib"
component (ie, libc++ refers to libc++abi with
@rpath/lib/libc++abi.dylib).
[1] https://logs.nix.samueldr.com/nix-darwin/2021-05-18#4993282
Test failure observed on Hydra: https://hydra.nixos.org/build/143130126
If things build fine with `stdenvNoCC`, let them use that. If tools
might be prefixed, prepare for that, either by directly splicing or just
using the env vars provided by the wrapper setup-hooks.
Co-authored-by: Dmitry Kalinkin <dmitry.kalinkin@gmail.com>
I am taking the non-invasive parts of #110914 to hopefully help out with #111988.
In particular:
- Use `lib.makeScopeWithSplicing` to make the `darwin` package set have
a proper `callPackage`.
- Adjust Darwin `stdenv`'s overlays keeping things from the previous
stage to not stick around too much.
- Expose `binutilsNoLibc` / `darwin.binutilsNoLibc` to hopefully get us
closer to a unified LLVM and GCC bootstrap.
Also begin to start work on cross compilation, though that will have to
be finished later.
The patches are based on the first version of
https://reviews.llvm.org/D99484. It's very annoying to do the
back-porting but the review has uncovered nothing super major so I'm
fine sticking with what I've got.
Beyond making the outputs work, I also strove to re-sync the packages,
as they have been drifting pointlessly apart for some time.
----
Other misc notes, highly incomplete
- lvm-config-native and llvm-config are put in `dev` because they are
tools just for build time.
- Clang no longer has an lld dep. That was introduced in
db29857eb3, but if clang needs help
finding lld when it is used we should just pass it flags / put in the
resource dir. Providing it at build time increases critical path
length for no good reason.
----
A note on `nativeCC`:
`stdenv` takes tools from the previous stage, so:
1. `pkgsBuildBuild`: `(?1, x, x)`
2. `pkgsBuildBuild.stdenv.cc`: `(?0, ?1, x)`
while:
1. `pkgsBuildBuild`: `(?1, x, x)`
2. `pkgsBuildBuild.targetPackages`: `(x, x, ?2)`
3. `pkgsBuildBuild.targetPackages.stdenv.cc`: `(?1, x, x)`
Patch every `derivation` call in the bootsrap process to add it a
conditional `__contentAddressed` parameter.
That way, passing `contentAddressedByDefault` means that the entire
build closure of a system can be content addressed
Build the llvm support libraries (libcxx, libcxxabi) from scratch
without using the existing llvm libraries. This is the same spirit and
similar implementation as the "useLLVM" bootstrap in llvm package
sets. Critically it avoids having libcxxabi provided by the cc-wrapper
when building libcxx, which otherwise results in two libcxxabi
instances.
$ otool -L /nix/store/vd4vvgs9xngqbjzpg3qc41wl6jh42s9i-libc++-7.1.0/lib/libc++.dylib
/nix/store/vd4vvgs9xngqbjzpg3qc41wl6jh42s9i-libc++-7.1.0/lib/libc++.dylib:
/nix/store/vd4vvgs9xngqbjzpg3qc41wl6jh42s9i-libc++-7.1.0/lib/libc++.1.0.dylib (compatibility version 1.0.0, current version 1.0.0)
/nix/store/gmpwk5fyp3iasppqrrdpswxvid6kcp8r-libc++abi-7.1.0/lib/libc++abi.dylib (compatibility version 1.0.0, current version 1.0.0)
/nix/store/3hn7azynqgp2pm5gpdg45gpq0ia72skg-libc++abi-7.1.0/lib/libc++abi.dylib (compatibility version 1.0.0, current version 1.0.0)
/nix/store/1nq94scbxs6bk7pimqhvz76q6cfmbv97-Libsystem-osx-10.12.6/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1226.10.1)
Additionally move some utilities (clang, binutils, coreutils, gnugrep)
to the stage layers so they can be replaced before the final
stdenv. This should cause most of stage4 to be built from the
toolchain assembled as of stage3 instead of the bootstrap toolchain.
This new version has tapi support, which is needed to build the new
stubs based libSystem, etc. and Big Sur support.
You can verify the provenance of these yourself by checking Hydra here:
https://hydra.nixos.org/build/128192471
This reverts commit c778945806.
I believe this is exactly what brings the staging branch into
the right shape after the last merge from master (through staging-next);
otherwise part of staging changes would be lost
(due to being already reachable from master but reverted).
The Rust `cc` crate started running `xcrun` when SDKROOT is defined:
a970b0ab0b
Consequently, building crates that use newer versions of the `cc`
crate fail, because xcrun is not available in pure build environments.
We can’t set this for cross-compiling since we use the GNU linker.
Instead, set these flags only when targetPlatform is macOS.
Fixes #80754
Fixes #83141
Fixes #21629
Passing these extra linker flags removes both the semi-random uuid
included in most binaries as well as making the sdk version consistent
instead of based on the current os version.
Load command 8
cmd LC_UUID
cmdsize 24
uuid 70FAF921-5DC8-371C-B814-4F121FADFDF4
Load command 9
cmd LC_VERSION_MIN_MACOSX
cmdsize 16
version 10.12
sdk 10.13
The -macosx_version_min flag isn't strictly necessary since that's
already handled by MACOSX_DEPLOYMENT_TARGET.
- Replaced python override from the final stdenv, instead we
propagate our bootstrap python to stage4 and override both
CF and xnu to use it.
- Removed CF argument from python interpreters, this is redundant
since it's not overidden anymore.
- Inherit CF from stage4, making it the same as the stdenv.