1
0
Fork 1
mirror of https://github.com/NixOS/nixpkgs.git synced 2024-11-23 06:01:15 +00:00
nixpkgs/pkgs/games/mnemosyne/default.nix

67 lines
2 KiB
Nix
Raw Normal View History

{ fetchurl
2017-12-18 10:07:46 +00:00
, python
}:
2017-12-18 10:07:46 +00:00
python.pkgs.buildPythonApplication rec {
pname = "mnemosyne";
version = "2.6.1";
2017-12-18 10:07:46 +00:00
src = fetchurl {
2017-12-18 10:07:46 +00:00
url = "mirror://sourceforge/project/mnemosyne-proj/mnemosyne/mnemosyne-${version}/Mnemosyne-${version}.tar.gz";
sha256 = "0xcwikq51abrlqfn5bv7kcw1ccd3ip0w6cjd5vnnzwnaqwdj8cb3";
};
2017-12-18 10:07:46 +00:00
propagatedBuildInputs = with python.pkgs; [
pyqt5
matplotlib
cherrypy
2017-12-18 10:07:46 +00:00
cheroot
webob
2017-12-18 10:07:46 +00:00
pillow
];
2017-12-18 10:07:46 +00:00
# No tests/ directrory in tarball
doCheck = false;
prePatch = ''
substituteInPlace setup.py --replace /usr $out
find . -type f -exec grep -H sys.exec_prefix {} ';' | cut -d: -f1 | xargs sed -i s,sys.exec_prefix,\"$out\",
'';
2017-12-18 10:07:46 +00:00
postInstall = ''
mkdir -p $out/share
2017-12-18 10:07:46 +00:00
mv $out/${python.sitePackages}/$out/share/locale $out/share
rm -r $out/${python.sitePackages}/nix
'';
2017-12-18 10:07:46 +00:00
meta = {
homepage = https://mnemosyne-proj.org/;
2014-11-11 13:20:43 +00:00
description = "Spaced-repetition software";
longDescription = ''
The Mnemosyne Project has two aspects:
* It's a free flash-card tool which optimizes your learning process.
* It's a research project into the nature of long-term memory.
We strive to provide a clear, uncluttered piece of software, easy to use
and to understand for newbies, but still infinitely customisable through
plugins and scripts for power users.
## Efficient learning
Mnemosyne uses a sophisticated algorithm to schedule the best time for
a card to come up for review. Difficult cards that you tend to forget
quickly will be scheduled more often, while Mnemosyne won't waste your
time on things you remember well.
## Memory research
If you want, anonymous statistics on your learning process can be
uploaded to a central server for analysis. This data will be valuable to
study the behaviour of our memory over a very long time period. The
results will be used to improve the scheduling algorithms behind the
2015-03-10 14:38:59 +00:00
software even further.
'';
};
}