forked from mirrors/nixpkgs
6dba41fbcb
Use the attribute mpi to provide a system wide default MPI implementation. The default is openmpi (as before). This now allows for overriding the MPI implentation by using the overlay mechanism. Build all packages with mpich instead of the default openmpi can now be achived like this: self: super: { mpi = super.mpich; } All derivations that have been using "mpi ? null" to provide optional building with MPI have been change in the following way to allow for optional builds with MPI: { ... , mpi , useMpi ? false }
423 lines
13 KiB
Nix
423 lines
13 KiB
Nix
{ stdenv, bazel_3, buildBazelPackage, isPy3k, lib, fetchFromGitHub, symlinkJoin
|
|
, addOpenGLRunpath
|
|
# Python deps
|
|
, buildPythonPackage, pythonOlder, pythonAtLeast, python
|
|
# Python libraries
|
|
, numpy, tensorflow-tensorboard_2, absl-py
|
|
, future, setuptools, wheel, keras-preprocessing, google-pasta
|
|
, opt-einsum, astunparse, h5py
|
|
, termcolor, grpcio, six, wrapt, protobuf, tensorflow-estimator_2
|
|
, dill, flatbuffers-python, tblib, typing-extensions
|
|
# Common deps
|
|
, git, pybind11, which, binutils, glibcLocales, cython, perl
|
|
# Common libraries
|
|
, jemalloc, mpi, gast, grpc, sqlite, boringssl, jsoncpp
|
|
, curl, snappy, flatbuffers-core, lmdb-core, icu, double-conversion, libpng, libjpeg_turbo, giflib
|
|
# Upsteam by default includes cuda support since tensorflow 1.15. We could do
|
|
# that in nix as well. It would make some things easier and less confusing, but
|
|
# it would also make the default tensorflow package unfree. See
|
|
# https://groups.google.com/a/tensorflow.org/forum/#!topic/developers/iRCt5m4qUz0
|
|
, cudaSupport ? false, cudatoolkit ? null, cudnn ? null, nccl ? null
|
|
, mklSupport ? false, mkl ? null
|
|
, tensorboardSupport ? true
|
|
# XLA without CUDA is broken
|
|
, xlaSupport ? cudaSupport
|
|
# Default from ./configure script
|
|
, cudaCapabilities ? [ "sm_35" "sm_50" "sm_60" "sm_70" "sm_75" "compute_80" ]
|
|
, sse42Support ? stdenv.hostPlatform.sse4_2Support
|
|
, avx2Support ? stdenv.hostPlatform.avx2Support
|
|
, fmaSupport ? stdenv.hostPlatform.fmaSupport
|
|
# Darwin deps
|
|
, Foundation, Security
|
|
}:
|
|
|
|
assert cudaSupport -> cudatoolkit != null
|
|
&& cudnn != null;
|
|
|
|
# unsupported combination
|
|
assert ! (stdenv.isDarwin && cudaSupport);
|
|
|
|
assert mklSupport -> mkl != null;
|
|
|
|
let
|
|
withTensorboard = (pythonOlder "3.6") || tensorboardSupport;
|
|
|
|
cudatoolkit_joined = symlinkJoin {
|
|
name = "${cudatoolkit.name}-merged";
|
|
paths = [
|
|
cudatoolkit.lib
|
|
cudatoolkit.out
|
|
] ++ lib.optionals (lib.versionOlder cudatoolkit.version "11") [
|
|
# for some reason some of the required libs are in the targets/x86_64-linux
|
|
# directory; not sure why but this works around it
|
|
"${cudatoolkit}/targets/${stdenv.system}"
|
|
];
|
|
};
|
|
|
|
cudatoolkit_cc_joined = symlinkJoin {
|
|
name = "${cudatoolkit.cc.name}-merged";
|
|
paths = [
|
|
cudatoolkit.cc
|
|
binutils.bintools # for ar, dwp, nm, objcopy, objdump, strip
|
|
];
|
|
};
|
|
|
|
# Needed for _some_ system libraries, grep INCLUDEDIR.
|
|
includes_joined = symlinkJoin {
|
|
name = "tensorflow-deps-merged";
|
|
paths = [
|
|
jsoncpp
|
|
];
|
|
};
|
|
|
|
tfFeature = x: if x then "1" else "0";
|
|
|
|
version = "2.4.0";
|
|
variant = if cudaSupport then "-gpu" else "";
|
|
pname = "tensorflow${variant}";
|
|
|
|
pythonEnv = python.withPackages (_:
|
|
[ # python deps needed during wheel build time (not runtime, see the buildPythonPackage part for that)
|
|
# This list can likely be shortened, but each trial takes multiple hours so won't bother for now.
|
|
absl-py
|
|
astunparse
|
|
dill
|
|
flatbuffers-python
|
|
gast
|
|
google-pasta
|
|
grpcio
|
|
h5py
|
|
keras-preprocessing
|
|
numpy
|
|
opt-einsum
|
|
protobuf
|
|
setuptools
|
|
six
|
|
tblib
|
|
tensorflow-estimator_2
|
|
tensorflow-tensorboard_2
|
|
termcolor
|
|
typing-extensions
|
|
wheel
|
|
wrapt
|
|
]);
|
|
|
|
bazel-build = buildBazelPackage {
|
|
name = "${pname}-${version}";
|
|
bazel = bazel_3;
|
|
|
|
src = fetchFromGitHub {
|
|
owner = "tensorflow";
|
|
repo = "tensorflow";
|
|
rev = "v${version}";
|
|
sha256 = "0yl06aypfxrcs35828xf04mkidz1x0j89v0q5h4d2xps1cb5rv3f";
|
|
};
|
|
|
|
patches = [
|
|
# Relax too strict Python packages versions dependencies.
|
|
./relax-dependencies.patch
|
|
# Add missing `io_bazel_rules_docker` dependency.
|
|
./workspace.patch
|
|
];
|
|
|
|
# On update, it can be useful to steal the changes from gentoo
|
|
# https://gitweb.gentoo.org/repo/gentoo.git/tree/sci-libs/tensorflow
|
|
|
|
nativeBuildInputs = [
|
|
which pythonEnv cython perl
|
|
] ++ lib.optional cudaSupport addOpenGLRunpath;
|
|
|
|
buildInputs = [
|
|
jemalloc
|
|
mpi
|
|
glibcLocales
|
|
git
|
|
|
|
# libs taken from system through the TF_SYS_LIBS mechanism
|
|
grpc
|
|
sqlite
|
|
boringssl
|
|
jsoncpp
|
|
curl
|
|
pybind11
|
|
snappy
|
|
flatbuffers-core
|
|
icu
|
|
double-conversion
|
|
libpng
|
|
libjpeg_turbo
|
|
giflib
|
|
lmdb-core
|
|
] ++ lib.optionals cudaSupport [
|
|
cudatoolkit
|
|
cudnn
|
|
] ++ lib.optionals mklSupport [
|
|
mkl
|
|
] ++ lib.optionals stdenv.isDarwin [
|
|
Foundation
|
|
Security
|
|
];
|
|
|
|
# arbitrarily set to the current latest bazel version, overly careful
|
|
TF_IGNORE_MAX_BAZEL_VERSION = true;
|
|
|
|
# Take as many libraries from the system as possible. Keep in sync with
|
|
# list of valid syslibs in
|
|
# https://github.com/tensorflow/tensorflow/blob/master/third_party/systemlibs/syslibs_configure.bzl
|
|
TF_SYSTEM_LIBS = lib.concatStringsSep "," [
|
|
"absl_py"
|
|
"astor_archive"
|
|
"astunparse_archive"
|
|
"boringssl"
|
|
# Not packaged in nixpkgs
|
|
# "com_github_googleapis_googleapis"
|
|
# "com_github_googlecloudplatform_google_cloud_cpp"
|
|
"com_github_grpc_grpc"
|
|
# Multiple issues with custom protobuf.
|
|
# First `com_github_googleapis` fails to configure. Can be worked around by disabling `com_github_googleapis`
|
|
# and related functionality, but then the next error is about "dangling symbolic link", and in general
|
|
# looks like that's only the beginning: see
|
|
# https://stackoverflow.com/questions/55578884/how-to-build-tensorflow-1-13-1-with-custom-protobuf
|
|
# "com_google_protobuf"
|
|
# Fails with the error: external/org_tensorflow/tensorflow/core/profiler/utils/tf_op_utils.cc:46:49: error: no matching function for call to 're2::RE2::FullMatch(absl::lts_2020_02_25::string_view&, re2::RE2&)'
|
|
# "com_googlesource_code_re2"
|
|
"curl"
|
|
"cython"
|
|
"dill_archive"
|
|
"double_conversion"
|
|
"enum34_archive"
|
|
"flatbuffers"
|
|
"functools32_archive"
|
|
"gast_archive"
|
|
"gif"
|
|
"hwloc"
|
|
"icu"
|
|
"jsoncpp_git"
|
|
"libjpeg_turbo"
|
|
"lmdb"
|
|
"nasm"
|
|
# "nsync" # not packaged in nixpkgs
|
|
"opt_einsum_archive"
|
|
"org_sqlite"
|
|
"pasta"
|
|
"pcre"
|
|
"png"
|
|
"pybind11"
|
|
"six_archive"
|
|
"snappy"
|
|
"tblib_archive"
|
|
"termcolor_archive"
|
|
"typing_extensions_archive"
|
|
"wrapt"
|
|
"zlib"
|
|
];
|
|
|
|
INCLUDEDIR = "${includes_joined}/include";
|
|
|
|
PYTHON_BIN_PATH = pythonEnv.interpreter;
|
|
|
|
TF_NEED_GCP = true;
|
|
TF_NEED_HDFS = true;
|
|
TF_ENABLE_XLA = tfFeature xlaSupport;
|
|
|
|
CC_OPT_FLAGS = " ";
|
|
|
|
# https://github.com/tensorflow/tensorflow/issues/14454
|
|
TF_NEED_MPI = tfFeature cudaSupport;
|
|
|
|
TF_NEED_CUDA = tfFeature cudaSupport;
|
|
TF_CUDA_PATHS = lib.optionalString cudaSupport "${cudatoolkit_joined},${cudnn},${nccl}";
|
|
GCC_HOST_COMPILER_PREFIX = lib.optionalString cudaSupport "${cudatoolkit_cc_joined}/bin";
|
|
GCC_HOST_COMPILER_PATH = lib.optionalString cudaSupport "${cudatoolkit_cc_joined}/bin/gcc";
|
|
TF_CUDA_COMPUTE_CAPABILITIES = lib.concatStringsSep "," cudaCapabilities;
|
|
|
|
postPatch = ''
|
|
# bazel 3.3 should work just as well as bazel 3.1
|
|
rm -f .bazelversion
|
|
'' + lib.optionalString (!withTensorboard) ''
|
|
# Tensorboard pulls in a bunch of dependencies, some of which may
|
|
# include security vulnerabilities. So we make it optional.
|
|
# https://github.com/tensorflow/tensorflow/issues/20280#issuecomment-400230560
|
|
sed -i '/tensorboard ~=/d' tensorflow/tools/pip_package/setup.py
|
|
'';
|
|
|
|
# https://github.com/tensorflow/tensorflow/pull/39470
|
|
NIX_CFLAGS_COMPILE = [ "-Wno-stringop-truncation" ];
|
|
|
|
preConfigure = let
|
|
opt_flags = []
|
|
++ lib.optionals sse42Support ["-msse4.2"]
|
|
++ lib.optionals avx2Support ["-mavx2"]
|
|
++ lib.optionals fmaSupport ["-mfma"];
|
|
in ''
|
|
patchShebangs configure
|
|
|
|
# dummy ldconfig
|
|
mkdir dummy-ldconfig
|
|
echo "#!${stdenv.shell}" > dummy-ldconfig/ldconfig
|
|
chmod +x dummy-ldconfig/ldconfig
|
|
export PATH="$PWD/dummy-ldconfig:$PATH"
|
|
|
|
export PYTHON_LIB_PATH="$NIX_BUILD_TOP/site-packages"
|
|
export CC_OPT_FLAGS="${lib.concatStringsSep " " opt_flags}"
|
|
mkdir -p "$PYTHON_LIB_PATH"
|
|
|
|
# To avoid mixing Python 2 and Python 3
|
|
unset PYTHONPATH
|
|
'';
|
|
|
|
configurePhase = ''
|
|
runHook preConfigure
|
|
./configure
|
|
runHook postConfigure
|
|
'';
|
|
|
|
hardeningDisable = [ "format" ];
|
|
|
|
bazelBuildFlags = [
|
|
"--config=opt" # optimize using the flags set in the configure phase
|
|
]
|
|
++ lib.optionals (mklSupport) [ "--config=mkl" ];
|
|
|
|
bazelTarget = "//tensorflow/tools/pip_package:build_pip_package //tensorflow/tools/lib_package:libtensorflow";
|
|
|
|
removeRulesCC = false;
|
|
# Without this Bazel complaints about sandbox violations.
|
|
dontAddBazelOpts = true;
|
|
|
|
fetchAttrs = {
|
|
# cudaSupport causes fetch of ncclArchive, resulting in different hashes
|
|
sha256 = if cudaSupport then
|
|
"0vyy1hv0jy5pqwvnc8pxb9isgnbw07c4a4d4wn61db00np114crz"
|
|
else
|
|
"0vczv5f9s4dxgwdkmf1y9b9ybh5d3y1nllqhb5q8aj9kq73izyn9";
|
|
};
|
|
|
|
buildAttrs = {
|
|
outputs = [ "out" "python" ];
|
|
|
|
preBuild = ''
|
|
patchShebangs .
|
|
'';
|
|
|
|
installPhase = ''
|
|
mkdir -p "$out"
|
|
tar -xf bazel-bin/tensorflow/tools/lib_package/libtensorflow.tar.gz -C "$out"
|
|
# Write pkgconfig file.
|
|
mkdir "$out/lib/pkgconfig"
|
|
cat > "$out/lib/pkgconfig/tensorflow.pc" << EOF
|
|
Name: TensorFlow
|
|
Version: ${version}
|
|
Description: Library for computation using data flow graphs for scalable machine learning
|
|
Requires:
|
|
Libs: -L$out/lib -ltensorflow
|
|
Cflags: -I$out/include/tensorflow
|
|
EOF
|
|
|
|
# build the source code, then copy it to $python (build_pip_package
|
|
# actually builds a symlink farm so we must dereference them).
|
|
bazel-bin/tensorflow/tools/pip_package/build_pip_package --src "$PWD/dist"
|
|
cp -Lr "$PWD/dist" "$python"
|
|
'';
|
|
|
|
postFixup = lib.optionalString cudaSupport ''
|
|
find $out -type f \( -name '*.so' -or -name '*.so.*' \) | while read lib; do
|
|
addOpenGLRunpath "$lib"
|
|
done
|
|
'';
|
|
};
|
|
|
|
meta = with lib; {
|
|
description = "Computation using data flow graphs for scalable machine learning";
|
|
homepage = "http://tensorflow.org";
|
|
license = licenses.asl20;
|
|
maintainers = with maintainers; [ jyp abbradar ];
|
|
platforms = with platforms; linux ++ darwin;
|
|
broken = !(xlaSupport -> cudaSupport);
|
|
};
|
|
};
|
|
|
|
in buildPythonPackage {
|
|
inherit version pname;
|
|
disabled = !isPy3k;
|
|
|
|
src = bazel-build.python;
|
|
|
|
# Upstream has a pip hack that results in bin/tensorboard being in both tensorflow
|
|
# and the propagated input tensorflow-tensorboard, which causes environment collisions.
|
|
# Another possibility would be to have tensorboard only in the buildInputs
|
|
# https://github.com/tensorflow/tensorflow/blob/v1.7.1/tensorflow/tools/pip_package/setup.py#L79
|
|
postInstall = ''
|
|
rm $out/bin/tensorboard
|
|
'';
|
|
|
|
setupPyGlobalFlags = [ "--project_name ${pname}" ];
|
|
|
|
# tensorflow/tools/pip_package/setup.py
|
|
propagatedBuildInputs = [
|
|
absl-py
|
|
astunparse
|
|
dill
|
|
flatbuffers-python
|
|
gast
|
|
google-pasta
|
|
grpcio
|
|
h5py
|
|
keras-preprocessing
|
|
numpy
|
|
opt-einsum
|
|
protobuf
|
|
six
|
|
tblib
|
|
tensorflow-estimator_2
|
|
termcolor
|
|
typing-extensions
|
|
wrapt
|
|
] ++ lib.optionals withTensorboard [
|
|
tensorflow-tensorboard_2
|
|
];
|
|
|
|
nativeBuildInputs = lib.optional cudaSupport addOpenGLRunpath;
|
|
|
|
postFixup = lib.optionalString cudaSupport ''
|
|
find $out -type f \( -name '*.so' -or -name '*.so.*' \) | while read lib; do
|
|
addOpenGLRunpath "$lib"
|
|
|
|
patchelf --set-rpath "${cudatoolkit}/lib:${cudatoolkit.lib}/lib:${cudnn}/lib:${nccl}/lib:$(patchelf --print-rpath "$lib")" "$lib"
|
|
done
|
|
'';
|
|
|
|
# Actual tests are slow and impure.
|
|
# TODO try to run them anyway
|
|
# TODO better test (files in tensorflow/tools/ci_build/builds/*test)
|
|
checkPhase = ''
|
|
${python.interpreter} <<EOF
|
|
# A simple "Hello world"
|
|
import tensorflow as tf
|
|
hello = tf.constant("Hello, world!")
|
|
tf.print(hello)
|
|
|
|
# Fit a simple model to random data
|
|
import numpy as np
|
|
np.random.seed(0)
|
|
tf.random.set_seed(0)
|
|
model = tf.keras.models.Sequential([
|
|
tf.keras.layers.Dense(1, activation="linear")
|
|
])
|
|
model.compile(optimizer="sgd", loss="mse")
|
|
|
|
x = np.random.uniform(size=(1,1))
|
|
y = np.random.uniform(size=(1,))
|
|
model.fit(x, y, epochs=1)
|
|
EOF
|
|
'';
|
|
# Regression test for #77626 removed because not more `tensorflow.contrib`.
|
|
|
|
passthru = {
|
|
deps = bazel-build.deps;
|
|
libtensorflow = bazel-build.out;
|
|
};
|
|
|
|
inherit (bazel-build) meta;
|
|
}
|