3
0
Fork 0
forked from mirrors/nixpkgs
nixpkgs/pkgs/development/python-modules/spacy-transformers/annotation-test/annotate.py

69 lines
1.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import pytest
import spacy
en_text = (
"When Sebastian Thrun started working on self-driving cars at "
"Google in 2007, few people outside of the company took him "
"seriously. “I can tell you very senior CEOs of major American "
"car companies would shake my hand and turn away because I wasnt "
"worth talking to,” said Thrun, in an interview with Recode earlier "
"this week.")
@pytest.fixture
def en_core_web_trf():
return spacy.load("en_core_web_trf")
@pytest.fixture
def doc_en_core_web_trf(en_core_web_trf):
return en_core_web_trf(en_text)
def test_entities(doc_en_core_web_trf):
entities = list(map(lambda e: (e.text, e.label_),
doc_en_core_web_trf.ents))
assert entities == [
('Sebastian Thrun', 'PERSON'),
('Google', 'ORG'),
('2007', 'DATE'),
('American', 'NORP'),
('Thrun', 'PERSON'),
('Recode', 'ORG'),
('earlier this week', 'DATE'),
]
def test_nouns(doc_en_core_web_trf):
assert [
chunk.text for chunk in doc_en_core_web_trf.noun_chunks] == [
'Sebastian Thrun',
'self-driving cars',
'Google',
'few people',
'the company',
'him',
'I',
'you',
'very senior CEOs',
'major American car companies',
'my hand',
'I',
'Thrun',
'an interview',
'Recode']
def test_verbs(doc_en_core_web_trf):
assert [
token.lemma_ for token in doc_en_core_web_trf if token.pos_ == "VERB"] == [
'start',
'take',
'tell',
'shake',
'turn',
'be',
'talk',
'say']