<chapter xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xml:id="ch-development"> <title>Development</title> <para>This chapter describes how you can modify and extend NixOS.</para> <!--===============================================================--> <section xml:id="sec-getting-sources"> <title>Getting the sources</title> <para>By default, NixOS’s <command>nixos-rebuild</command> command uses the NixOS and Nixpkgs sources provided by the <literal>nixos-unstable</literal> channel (kept in <filename>/nix/var/nix/profiles/per-user/root/channels/nixos</filename>). To modify NixOS, however, you should check out the latest sources from Git. This is done using the following command: <screen> $ nixos-checkout <replaceable>/my/sources</replaceable> </screen> or <screen> $ mkdir -p <replaceable>/my/sources</replaceable> $ cd <replaceable>/my/sources</replaceable> $ nix-env -i git $ git clone git://github.com/NixOS/nixpkgs.git </screen> This will check out the latest NixOS sources to <filename><replaceable>/my/sources</replaceable>/nixpkgs/nixos</filename> and the Nixpkgs sources to <filename><replaceable>/my/sources</replaceable>/nixpkgs</filename>. (The NixOS source tree lives in a subdirectory of the Nixpkgs repository.) If you want to rebuild your system using your (modified) sources, you need to tell <command>nixos-rebuild</command> about them using the <option>-I</option> flag: <screen> $ nixos-rebuild switch -I nixpkgs=<replaceable>/my/sources</replaceable>/nixpkgs </screen> </para> <para>If you want <command>nix-env</command> to use the expressions in <replaceable>/my/sources</replaceable>, use <command>nix-env -f <replaceable>/my/sources</replaceable>/nixpkgs</command>, or change the default by adding a symlink in <filename>~/.nix-defexpr</filename>: <screen> $ ln -s <replaceable>/my/sources</replaceable>/nixpkgs ~/.nix-defexpr/nixpkgs </screen> You may want to delete the symlink <filename>~/.nix-defexpr/channels_root</filename> to prevent root’s NixOS channel from clashing with your own tree.</para> <!-- FIXME: not sure what this means. <para>You should not pass the base directory <filename><replaceable>/my/sources</replaceable></filename> to <command>nix-env</command>, as it will break after interpreting expressions in <filename>nixos/</filename> as packages.</para> --> </section> <!--===============================================================--> <section xml:id="sec-writing-modules"> <title>Writing NixOS modules</title> <para>NixOS has a modular system for declarative configuration. This system combines multiple <emphasis>modules</emphasis> to produce the full system configuration. One of the modules that constitute the configuration is <filename>/etc/nixos/configuration.nix</filename>. Most of the others live in the <link xlink:href="https://github.com/NixOS/nixpkgs/tree/master/nixos/modules"><filename>nixos/modules</filename></link> subdirectory of the Nixpkgs tree.</para> <para>Each NixOS module is a file that handles one logical aspect of the configuration, such as a specific kind of hardware, a service, or network settings. A module configuration does not have to handle everything from scratch; it can use the functionality provided by other modules for its implementation. Thus a module can <emphasis>declare</emphasis> options that can be used by other modules, and conversely can <emphasis>define</emphasis> options provided by other modules in its own implementation. For example, the module <link xlink:href="https://github.com/NixOS/nixpkgs/blob/master/nixos/modules/security/pam.nix"><filename>pam.nix</filename></link> declares the option <option>security.pam.services</option> that allows other modules (e.g. <link xlink:href="https://github.com/NixOS/nixpkgs/blob/master/nixos/modules/services/networking/ssh/sshd.nix"><filename>sshd.nix</filename></link>) to define PAM services; and it defines the option <option>environment.etc</option> (declared by <link xlink:href="https://github.com/NixOS/nixpkgs/blob/master/nixos/modules/system/etc/etc.nix"><filename>etc.nix</filename></link>) to cause files to be created in <filename>/etc/pam.d</filename>.</para> <para xml:id="para-module-syn">In <xref linkend="sec-configuration-syntax"/>, we saw the following structure of NixOS modules: <programlisting> { config, pkgs, ... }: { <replaceable>option definitions</replaceable> } </programlisting> This is actually an <emphasis>abbreviated</emphasis> form of module that only defines options, but does not declare any. The structure of full NixOS modules is shown in <xref linkend='ex-module-syntax' />.</para> <example xml:id='ex-module-syntax'><title>Structure of NixOS modules</title> <programlisting> { config, pkgs, ... }: <co xml:id='module-syntax-1' /> { imports = [ <replaceable>paths of other modules</replaceable> <co xml:id='module-syntax-2' /> ]; options = { <replaceable>option declarations</replaceable> <co xml:id='module-syntax-3' /> }; config = { <replaceable>option definitions</replaceable> <co xml:id='module-syntax-4' /> }; }</programlisting> </example> <para>The meaning of each part is as follows. <calloutlist> <callout arearefs='module-syntax-1'> <para>This line makes the current Nix expression a function. The variable <varname>pkgs</varname> contains Nixpkgs, while <varname>config</varname> contains the full system configuration. This line can be omitted if there is no reference to <varname>pkgs</varname> and <varname>config</varname> inside the module.</para> </callout> <callout arearefs='module-syntax-2'> <para>This list enumerates the paths to other NixOS modules that should be included in the evaluation of the system configuration. A default set of modules is defined in the file <filename>modules/module-list.nix</filename>. These don't need to be added in the import list.</para> </callout> <callout arearefs='module-syntax-3'> <para>The attribute <varname>options</varname> is a nested set of <emphasis>option declarations</emphasis> (described below).</para> </callout> <callout arearefs='module-syntax-4'> <para>The attribute <varname>config</varname> is a nested set of <emphasis>option definitions</emphasis> (also described below).</para> </callout> </calloutlist> </para> <para><xref linkend='locate-example' /> shows a module that handles the regular update of the “locate” database, an index of all files in the file system. This module declares two options that can be defined by other modules (typically the user’s <filename>configuration.nix</filename>): <option>services.locate.enable</option> (whether the database should be updated) and <option>services.locate.period</option> (when the update should be done). It implements its functionality by defining two options declared by other modules: <option>systemd.services</option> (the set of all systemd services) and <option>services.cron.systemCronJobs</option> (the list of commands to be executed periodically by <command>cron</command>).</para> <example xml:id='locate-example'><title>NixOS module for the “locate” service</title> <programlisting> { config, lib, pkgs, ... }: with lib; let locatedb = "/var/cache/locatedb"; in { options = { services.locate = { enable = mkOption { type = types.bool; default = false; description = '' If enabled, NixOS will periodically update the database of files used by the <command>locate</command> command. ''; }; period = mkOption { type = types.str; default = "15 02 * * *"; description = '' This option defines (in the format used by cron) when the locate database is updated. The default is to update at 02:15 at night every day. ''; }; }; }; config = { systemd.services.update-locatedb = { description = "Update Locate Database"; path = [ pkgs.su ]; script = '' mkdir -m 0755 -p $(dirname ${locatedb}) exec updatedb --localuser=nobody --output=${locatedb} --prunepaths='/tmp /var/tmp /media /run' ''; }; services.cron.systemCronJobs = optional config.services.locate.enable "${config.services.locate.period} root ${config.systemd.package}/bin/systemctl start update-locatedb.service"; }; }</programlisting> </example> <section><title>Option declarations</title> <para>An option declaration specifies the name, type and description of a NixOS configuration option. It is illegal to define an option that hasn’t been declared in any module. A option declaration generally looks like this: <programlisting> options = { <replaceable>name</replaceable> = mkOption { type = <replaceable>type specification</replaceable>; default = <replaceable>default value</replaceable>; example = <replaceable>example value</replaceable>; description = "<replaceable>Description for use in the NixOS manual.</replaceable>"; }; }; </programlisting> </para> <para>The function <varname>mkOption</varname> accepts the following arguments. <variablelist> <varlistentry> <term><varname>type</varname></term> <listitem> <para>The type of the option (see below). It may be omitted, but that’s not advisable since it may lead to errors that are hard to diagnose.</para> </listitem> </varlistentry> <varlistentry> <term><varname>default</varname></term> <listitem> <para>The default value used if no value is defined by any module. A default is not required; in that case, if the option value is ever used, an error will be thrown.</para> </listitem> </varlistentry> <varlistentry> <term><varname>example</varname></term> <listitem> <para>An example value that will be shown in the NixOS manual.</para> </listitem> </varlistentry> <varlistentry> <term><varname>description</varname></term> <listitem> <para>A textual description of the option, in DocBook format, that will be included in the NixOS manual.</para> </listitem> </varlistentry> </variablelist> </para> <para>Here is a non-exhaustive list of option types: <variablelist> <varlistentry> <term><varname>types.bool</varname></term> <listitem> <para>A Boolean.</para> </listitem> </varlistentry> <varlistentry> <term><varname>types.int</varname></term> <listitem> <para>An integer.</para> </listitem> </varlistentry> <varlistentry> <term><varname>types.str</varname></term> <listitem> <para>A string.</para> </listitem> </varlistentry> <varlistentry> <term><varname>types.lines</varname></term> <listitem> <para>A string. If there are multiple definitions, they are concatenated, with newline characters in between.</para> </listitem> </varlistentry> <varlistentry> <term><varname>types.path</varname></term> <listitem> <para>A path, defined as anything that, when coerced to a string, starts with a slash. This includes derivations.</para> </listitem> </varlistentry> <varlistentry> <term><varname>types.listOf</varname> <replaceable>t</replaceable></term> <listitem> <para>A list of elements of type <replaceable>t</replaceable> (e.g., <literal>types.listOf types.str</literal> is a list of strings). Multiple definitions are concatenated together.</para> </listitem> </varlistentry> <varlistentry> <term><varname>types.attrsOf</varname> <replaceable>t</replaceable></term> <listitem> <para>A set of elements of type <replaceable>t</replaceable> (e.g., <literal>types.attrsOf types.int</literal> is a set of name/value pairs, the values being integers).</para> </listitem> </varlistentry> <varlistentry> <term><varname>types.nullOr</varname> <replaceable>t</replaceable></term> <listitem> <para>Either the value <literal>null</literal> or something of type <replaceable>t</replaceable>.</para> </listitem> </varlistentry> </variablelist> You can also create new types using the function <varname>mkOptionType</varname>. See <filename>lib/types.nix</filename> in Nixpkgs for details.</para> </section> <section><title>Option definitions</title> <para>Option definitions are generally straight-forward bindings of values to option names, like <programlisting> config = { services.httpd.enable = true; }; </programlisting> However, sometimes you need to wrap an option definition or set of option definitions in a <emphasis>property</emphasis> to achieve certain effects:</para> <simplesect><title>Delaying conditionals</title> <para>If a set of option definitions is conditional on the value of another option, you may need to use <varname>mkIf</varname>. Consider, for instance: <programlisting> config = if config.services.httpd.enable then { environment.systemPackages = [ <replaceable>...</replaceable> ]; <replaceable>...</replaceable> } else {}; </programlisting> This definition will cause Nix to fail with an “infinite recursion” error. Why? Because the value of <option>config.services.httpd.enable</option> depends on the value being constructed here. After all, you could also write the clearly circular and contradictory: <programlisting> config = if config.services.httpd.enable then { services.httpd.enable = false; } else { services.httpd.enable = true; }; </programlisting> The solution is to write: <programlisting> config = mkIf config.services.httpd.enable { environment.systemPackages = [ <replaceable>...</replaceable> ]; <replaceable>...</replaceable> }; </programlisting> The special function <varname>mkIf</varname> causes the evaluation of the conditional to be “pushed down” into the individual definitions, as if you had written: <programlisting> config = { environment.systemPackages = if config.services.httpd.enable then [ <replaceable>...</replaceable> ] else []; <replaceable>...</replaceable> }; </programlisting> </para> </simplesect> <simplesect><title>Setting priorities</title> <para>A module can override the definitions of an option in other modules by setting a <emphasis>priority</emphasis>. All option definitions that do not have the lowest priority value are discarded. By default, option definitions have priority 1000. You can specify an explicit priority by using <varname>mkOverride</varname>, e.g. <programlisting> services.openssh.enable = mkOverride 10 false; </programlisting> This definition causes all other definitions with priorities above 10 to be discarded. The function <varname>mkForce</varname> is equal to <varname>mkOverride 50</varname>.</para> </simplesect> <simplesect><title>Merging configurations</title> <para>In conjunction with <literal>mkIf</literal>, it is sometimes useful for a module to return multiple sets of option definitions, to be merged together as if they were declared in separate modules. This can be done using <varname>mkMerge</varname>: <programlisting> config = mkMerge [ # Unconditional stuff. { environment.systemPackages = [ <replaceable>...</replaceable> ]; } # Conditional stuff. (mkIf config.services.bla.enable { environment.systemPackages = [ <replaceable>...</replaceable> ]; }) ]; </programlisting> </para> </simplesect> </section> <section><title>Important options</title> <para>NixOS has many options, but some are of particular importance to module writers.</para> <variablelist> <varlistentry> <term><option>environment.etc</option></term> <listitem> <para>This set defines files in <filename>/etc</filename>. A typical use is: <programlisting> environment.etc."os-release".text = '' NAME=NixOS <replaceable>...</replaceable> ''; </programlisting> which causes a file named <filename>/etc/os-release</filename> to be created with the given contents.</para> </listitem> </varlistentry> <varlistentry> <term><option>system.activationScripts</option></term> <listitem> <para>A set of shell script fragments that must be executed whenever the configuration is activated (i.e., at boot time, or after running <command>nixos-rebuild switch</command>). For instance, <programlisting> system.activationScripts.media = '' mkdir -m 0755 -p /media ''; </programlisting> causes the directory <filename>/media</filename> to be created. Activation scripts must be idempotent. They should not start background processes such as daemons; use <option>systemd.services</option> for that.</para> </listitem> </varlistentry> <varlistentry> <term><option>systemd.services</option></term> <listitem> <para>This is the set of systemd services. Example: <programlisting> systemd.services.dhcpcd = { description = "DHCP Client"; wantedBy = [ "multi-user.target" ]; after = [ "systemd-udev-settle.service" ]; path = [ dhcpcd pkgs.nettools pkgs.openresolv ]; serviceConfig = { Type = "forking"; PIDFile = "/run/dhcpcd.pid"; ExecStart = "${dhcpcd}/sbin/dhcpcd --config ${dhcpcdConf}"; Restart = "always"; }; }; </programlisting> which creates the systemd unit <literal>dhcpcd.service</literal>. The option <option>wantedBy</option> determined which other units pull this one in; <literal>multi-user.target</literal> is the default target of the system, so <literal>dhcpcd.service</literal> will always be started. The option <option>serviceConfig.ExecStart</option> provides the main command for the service; it’s also possible to provide pre-start actions, stop scripts, and so on.</para> </listitem> </varlistentry> <varlistentry> <term><option>users.extraUsers</option></term> <term><option>users.extraGroups</option></term> <listitem> <para>If your service requires special UIDs or GIDs, you can define them with these options. See <xref linkend="sec-user-management"/> for details.</para> </listitem> </varlistentry> </variablelist> </section> </section> <!--===============================================================--> <section xml:id="sec-building-parts"> <title>Building specific parts of NixOS</title> <para>With the command <command>nix-build</command>, you can build specific parts of your NixOS configuration. This is done as follows: <screen> $ cd <replaceable>/path/to/nixpkgs/nixos</replaceable> $ nix-build -A config.<replaceable>option</replaceable></screen> where <replaceable>option</replaceable> is a NixOS option with type “derivation” (i.e. something that can be built). Attributes of interest include: <variablelist> <varlistentry> <term><varname>system.build.toplevel</varname></term> <listitem> <para>The top-level option that builds the entire NixOS system. Everything else in your configuration is indirectly pulled in by this option. This is what <command>nixos-rebuild</command> builds and what <filename>/run/current-system</filename> points to afterwards.</para> <para>A shortcut to build this is: <screen> $ nix-build -A system</screen> </para> </listitem> </varlistentry> <varlistentry> <term><varname>system.build.manual.manual</varname></term> <listitem><para>The NixOS manual.</para></listitem> </varlistentry> <varlistentry> <term><varname>system.build.etc</varname></term> <listitem><para>A tree of symlinks that form the static parts of <filename>/etc</filename>.</para></listitem> </varlistentry> <varlistentry> <term><varname>system.build.initialRamdisk</varname></term> <term><varname>system.build.kernel</varname></term> <listitem> <para>The initial ramdisk and kernel of the system. This allows a quick way to test whether the kernel and the initial ramdisk boot correctly, by using QEMU’s <option>-kernel</option> and <option>-initrd</option> options: <screen> $ nix-build -A config.system.build.initialRamdisk -o initrd $ nix-build -A config.system.build.kernel -o kernel $ qemu-system-x86_64 -kernel ./kernel/bzImage -initrd ./initrd/initrd -hda /dev/null </screen> </para> </listitem> </varlistentry> <varlistentry> <term><varname>system.build.nixos-rebuild</varname></term> <term><varname>system.build.nixos-install</varname></term> <term><varname>system.build.nixos-generate-config</varname></term> <listitem> <para>These build the corresponding NixOS commands.</para> </listitem> </varlistentry> <varlistentry> <term><varname>systemd.units.<replaceable>unit-name</replaceable>.unit</varname></term> <listitem> <para>This builds the unit with the specified name. Note that since unit names contain dots (e.g. <literal>httpd.service</literal>), you need to put them between quotes, like this: <screen> $ nix-build -A 'config.systemd.units."httpd.service".unit' </screen> You can also test individual units, without rebuilding the whole system, by putting them in <filename>/run/systemd/system</filename>: <screen> $ cp $(nix-build -A 'config.systemd.units."httpd.service".unit')/httpd.service \ /run/systemd/system/tmp-httpd.service $ systemctl daemon-reload $ systemctl start tmp-httpd.service </screen> Note that the unit must not have the same name as any unit in <filename>/etc/systemd/system</filename> since those take precedence over <filename>/run/systemd/system</filename>. That’s why the unit is installed as <filename>tmp-httpd.service</filename> here.</para> </listitem> </varlistentry> </variablelist> </para> </section> <!--===============================================================--> <section xml:id="sec-building-cd"> <title>Building your own NixOS CD</title> <para>Building a NixOS CD is as easy as configuring your own computer. The idea is to use another module which will replace your <filename>configuration.nix</filename> to configure the system that would be installed on the CD.</para> <para>Default CD/DVD configurations are available inside <filename>nixos/modules/installer/cd-dvd</filename>. To build them you have to set <envar>NIXOS_CONFIG</envar> before running <command>nix-build</command> to build the ISO. <screen> $ nix-build -A config.system.build.isoImage -I nixos-config=modules/installer/cd-dvd/installation-cd-minimal.nix</screen> </para> <para>Before burning your CD/DVD, you can check the content of the image by mounting anywhere like suggested by the following command: <screen> $ mount -o loop -t iso9660 ./result/iso/cd.iso /mnt/iso</screen> </para> </section> <!--===============================================================--> <section> <title>Testing the installer</title> <para>Building, burning, and booting from an installation CD is rather tedious, so here is a quick way to see if the installer works properly: <screen> $ nix-build -A config.system.build.nixos-install $ mount -t tmpfs none /mnt $ ./result/bin/nixos-install</screen> To start a login shell in the new NixOS installation in <filename>/mnt</filename>: <screen> $ ./result/bin/nixos-install --chroot </screen> </para> </section> <!--===============================================================--> <section xml:id="sec-nixos-tests"> <title>NixOS tests</title> <para>When you add some feature to NixOS, you should write a test for it. NixOS tests are kept in the directory <filename xlink:href="https://github.com/NixOS/nixpkgs/tree/master/nixos/tests">nixos/tests</filename>, and are executed (using Nix) by a testing framework that automatically starts one or more virtual machines containing the NixOS system(s) required for the test.</para> <simplesect><title>Writing tests</title> <para>A NixOS test is a Nix expression that has the following structure: <programlisting> import ./make-test.nix { # Either the configuration of a single machine: machine = { config, pkgs, ... }: { <replaceable>configuration…</replaceable> }; # Or a set of machines: nodes = { <replaceable>machine1</replaceable> = { config, pkgs, ... }: { <replaceable>…</replaceable> }; <replaceable>machine2</replaceable> = { config, pkgs, ... }: { <replaceable>…</replaceable> }; … }; testScript = '' <replaceable>Perl code…</replaceable> ''; } </programlisting> The attribute <literal>testScript</literal> is a bit of Perl code that executes the test (described below). During the test, it will start one or more virtual machines, the configuration of which is described by the attribute <literal>machine</literal> (if you need only one machine in your test) or by the attribute <literal>nodes</literal> (if you need multiple machines). For instance, <filename xlink:href="https://github.com/NixOS/nixpkgs/blob/master/nixos/tests/login.nix">login.nix</filename> only needs a single machine to test whether users can log in on the virtual console, whether device ownership is correctly maintained when switching between consoles, and so on. On the other hand, <filename xlink:href="https://github.com/NixOS/nixpkgs/blob/master/nixos/tests/nfs.nix">nfs.nix</filename>, which tests NFS client and server functionality in the Linux kernel (including whether locks are maintained across server crashes), requires three machines: a server and two clients.</para> <para>There are a few special NixOS configuration options for test VMs: <!-- FIXME: would be nice to generate this automatically. --> <variablelist> <varlistentry> <term><option>virtualisation.memorySize</option></term> <listitem><para>The memory of the VM in megabytes.</para></listitem> </varlistentry> <varlistentry> <term><option>virtualisation.vlans</option></term> <listitem><para>The virtual networks to which the VM is connected. See <filename xlink:href="https://github.com/NixOS/nixpkgs/blob/master/nixos/tests/nat.nix">nat.nix</filename> for an example.</para></listitem> </varlistentry> <varlistentry> <term><option>virtualisation.writableStore</option></term> <listitem><para>By default, the Nix store in the VM is not writable. If you enable this option, a writable union file system is mounted on top of the Nix store to make it appear writable. This is necessary for tests that run Nix operations that modify the store.</para></listitem> </varlistentry> </variablelist> For more options, see the module <filename xlink:href="https://github.com/NixOS/nixpkgs/blob/master/nixos/modules/virtualisation/qemu-vm.nix">qemu-vm.nix</filename>.</para> <para>The test script is a sequence of Perl statements that perform various actions, such as starting VMs, executing commands in the VMs, and so on. Each virtual machine is represented as an object stored in the variable <literal>$<replaceable>name</replaceable></literal>, where <replaceable>name</replaceable> is the identifier of the machine (which is just <literal>machine</literal> if you didn’t specify multiple machines using the <literal>nodes</literal> attribute). For instance, the following starts the machine, waits until it has finished booting, then executes a command and checks that the output is more-or-less correct: <programlisting> $machine->start; $machine->waitForUnit("default.target"); $machine->succeed("uname") =~ /Linux/; </programlisting> The first line is actually unnecessary; machines are implicitly started when you first execute an action on them (such as <literal>waitForUnit</literal> or <literal>succeed</literal>). If you have multiple machines, you can speed up the test by starting them in parallel: <programlisting> startAll; </programlisting> </para> <para>The following methods are available on machine objects: <variablelist> <varlistentry> <term><methodname>start</methodname></term> <listitem><para>Start the virtual machine. This method is asynchronous — it does not wait for the machine to finish booting.</para></listitem> </varlistentry> <varlistentry> <term><methodname>shutdown</methodname></term> <listitem><para>Shut down the machine, waiting for the VM to exit.</para></listitem> </varlistentry> <varlistentry> <term><methodname>crash</methodname></term> <listitem><para>Simulate a sudden power failure, by telling the VM to exit immediately.</para></listitem> </varlistentry> <varlistentry> <term><methodname>block</methodname></term> <listitem><para>Simulate unplugging the Ethernet cable that connects the machine to the other machines.</para></listitem> </varlistentry> <varlistentry> <term><methodname>unblock</methodname></term> <listitem><para>Undo the effect of <methodname>block</methodname>.</para></listitem> </varlistentry> <varlistentry> <term><methodname>screenshot</methodname></term> <listitem><para>Take a picture of the display of the virtual machine, in PNG format. The screenshot is linked from the HTML log.</para></listitem> </varlistentry> <varlistentry> <term><methodname>sendMonitorCommand</methodname></term> <listitem><para>Send a command to the QEMU monitor. This is rarely used, but allows doing stuff such as attaching virtual USB disks to a running machine.</para></listitem> </varlistentry> <varlistentry> <term><methodname>sendKeys</methodname></term> <listitem><para>Simulate pressing keys on the virtual keyboard, e.g., <literal>sendKeys("ctrl-alt-delete")</literal>.</para></listitem> </varlistentry> <varlistentry> <term><methodname>sendChars</methodname></term> <listitem><para>Simulate typing a sequence of characters on the virtual keyboard, e.g., <literal>sendKeys("foobar\n")</literal> will type the string <literal>foobar</literal> followed by the Enter key.</para></listitem> </varlistentry> <varlistentry> <term><methodname>execute</methodname></term> <listitem><para>Execute a shell command, returning a list <literal>(<replaceable>status</replaceable>, <replaceable>stdout</replaceable>)</literal>.</para></listitem> </varlistentry> <varlistentry> <term><methodname>succeed</methodname></term> <listitem><para>Execute a shell command, raising an exception if the exit status is not zero, otherwise returning the standard output.</para></listitem> </varlistentry> <varlistentry> <term><methodname>fail</methodname></term> <listitem><para>Like <methodname>succeed</methodname>, but raising an exception if the command returns a zero status.</para></listitem> </varlistentry> <varlistentry> <term><methodname>waitUntilSucceeds</methodname></term> <listitem><para>Repeat a shell command with 1-second intervals until it succeeds.</para></listitem> </varlistentry> <varlistentry> <term><methodname>waitUntilFails</methodname></term> <listitem><para>Repeat a shell command with 1-second intervals until it fails.</para></listitem> </varlistentry> <varlistentry> <term><methodname>waitForUnit</methodname></term> <listitem><para>Wait until the specified systemd unit has reached the “active” state.</para></listitem> </varlistentry> <varlistentry> <term><methodname>waitForFile</methodname></term> <listitem><para>Wait until the specified file exists.</para></listitem> </varlistentry> <varlistentry> <term><methodname>waitForOpenPort</methodname></term> <listitem><para>Wait until a process is listening on the given TCP port (on <literal>localhost</literal>, at least).</para></listitem> </varlistentry> <varlistentry> <term><methodname>waitForClosedPort</methodname></term> <listitem><para>Wait until nobody is listening on the given TCP port.</para></listitem> </varlistentry> <varlistentry> <term><methodname>waitForX</methodname></term> <listitem><para>Wait until the X11 server is accepting connections.</para></listitem> </varlistentry> <varlistentry> <term><methodname>waitForWindow</methodname></term> <listitem><para>Wait until an X11 window has appeared whose name matches the given regular expression, e.g., <literal>waitForWindow(qr/Terminal/)</literal>.</para></listitem> </varlistentry> </variablelist> </para> </simplesect> <simplesect><title>Running tests</title> <para>You can run tests using <command>nix-build</command>. For example, to run the test <filename xlink:href="https://github.com/NixOS/nixpkgs/blob/master/nixos/tests/login.nix">login.nix</filename>, you just do: <screen> $ nix-build '<nixpkgs/nixos/tests/login.nix>' </screen> or, if you don’t want to rely on <envar>NIX_PATH</envar>: <screen> $ cd /my/nixpkgs/nixos/tests $ nix-build login.nix … running the VM test script machine: QEMU running (pid 8841) … 6 out of 6 tests succeeded </screen> After building/downloading all required dependencies, this will perform a build that starts a QEMU/KVM virtual machine containing a NixOS system. The virtual machine mounts the Nix store of the host; this makes VM creation very fast, as no disk image needs to be created. Afterwards, you can view a pretty-printed log of the test: <screen> $ firefox result/log.html </screen> </para> <para>It is also possible to run the test environment interactively, allowing you to experiment with the VMs. For example: <screen> $ nix-build login.nix -A driver $ ./result/bin/nixos-run-vms </screen> The script <command>nixos-run-vms</command> starts the virtual machines defined by test. The root file system of the VMs is created on the fly and kept across VM restarts in <filename>./</filename><varname>hostname</varname><filename>.qcow2</filename>.</para> <para>Finally, the test itself can be run interactively. This is particularly useful when developing or debugging a test: <screen> $ nix-build tests/ -A nfs.driver $ ./result/bin/nixos-test-driver starting VDE switch for network 1 > </screen> You can then take any Perl statement, e.g. <screen> > startAll > $machine->succeed("touch /tmp/foo") </screen> The function <command>testScript</command> executes the entire test script and drops you back into the test driver command line upon its completion. This allows you to inspect the state of the VMs after the test (e.g. to debug the test script).</para> </simplesect> </section> </chapter>