diff --git a/src/doc/en/faq/faq-usage.rst b/src/doc/en/faq/faq-usage.rst index 2347a1190d..f5b0fe71a4 100644 --- a/src/doc/en/faq/faq-usage.rst +++ b/src/doc/en/faq/faq-usage.rst @@ -338,7 +338,7 @@ ints. For example:: sage: RealNumber = float; Integer = int sage: from scipy import stats sage: stats.ttest_ind(list([1,2,3,4,5]),list([2,3,4,5,.6])) - Ttest_indResult(statistic=0.076752955645333687, pvalue=0.94070490247380478) + Ttest_indResult(statistic=0.0767529..., pvalue=0.940704...) sage: stats.uniform(0,15).ppf([0.5,0.7]) array([ 7.5, 10.5]) diff --git a/src/doc/en/thematic_tutorials/numerical_sage/cvxopt.rst b/src/doc/en/thematic_tutorials/numerical_sage/cvxopt.rst index 314811c42b..e5f54ec4c2 100644 --- a/src/doc/en/thematic_tutorials/numerical_sage/cvxopt.rst +++ b/src/doc/en/thematic_tutorials/numerical_sage/cvxopt.rst @@ -48,11 +48,13 @@ we could do the following. sage: B = numpy.array([1.0]*5) sage: B.shape=(5,1) sage: print(B) - [[ 1.] - [ 1.] - [ 1.] - [ 1.] - [ 1.]] + [[1.] + [1.] + [1.] + [1.] + [1.]] + + sage: print(A) [ 2.00e+00 3.00e+00 0 0 0 ] [ 3.00e+00 0 4.00e+00 0 6.00e+00] diff --git a/src/doc/en/thematic_tutorials/numerical_sage/numpy.rst b/src/doc/en/thematic_tutorials/numerical_sage/numpy.rst index 5b89cd75ee..e50b2ea5d4 100644 --- a/src/doc/en/thematic_tutorials/numerical_sage/numpy.rst +++ b/src/doc/en/thematic_tutorials/numerical_sage/numpy.rst @@ -84,7 +84,7 @@ well as take slices sage: l[3] 3.0 sage: l[3:6] - array([ 3., 4., 5.]) + array([3., 4., 5.]) You can do basic arithmetic operations @@ -147,11 +147,11 @@ also do matrix vector multiplication, and matrix addition sage: n = numpy.matrix([[1,2],[3,4]],dtype=float) sage: v = numpy.array([[1],[2]],dtype=float) sage: n*v - matrix([[ 5.], - [ 11.]]) + matrix([[ 5.], + [11.]]) sage: n+n - matrix([[ 2., 4.], - [ 6., 8.]]) + matrix([[2., 4.], + [6., 8.]]) If ``n`` was created with :meth:`numpy.array`, then to do matrix vector multiplication, you would use ``numpy.dot(n,v)``. @@ -170,11 +170,11 @@ to manipulate 22., 23., 24.]) sage: n.shape=(5,5) sage: n - array([[ 0., 1., 2., 3., 4.], - [ 5., 6., 7., 8., 9.], - [ 10., 11., 12., 13., 14.], - [ 15., 16., 17., 18., 19.], - [ 20., 21., 22., 23., 24.]]) + array([[ 0., 1., 2., 3., 4.], + [ 5., 6., 7., 8., 9.], + [10., 11., 12., 13., 14.], + [15., 16., 17., 18., 19.], + [20., 21., 22., 23., 24.]]) This changes the one-dimensional array into a `5\times 5` array. @@ -187,8 +187,8 @@ NumPy arrays can be sliced as well sage: n=numpy.array(range(25),dtype=float) sage: n.shape=(5,5) sage: n[2:4,1:3] - array([[ 11., 12.], - [ 16., 17.]]) + array([[11., 12.], + [16., 17.]]) It is important to note that the sliced matrices are references to the original @@ -224,8 +224,8 @@ Some particularly useful commands are sage: x=numpy.arange(0,2,.1,dtype=float) sage: x - array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. , - 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9]) + array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. , 1.1, 1.2, + 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9]) You can see that :meth:`numpy.arange` creates an array of floats increasing by 0.1 from 0 to 2. There is a useful command :meth:`numpy.r_` that is best explained by example @@ -240,10 +240,11 @@ from 0 to 2. There is a useful command :meth:`numpy.r_` that is best explained b sage: Integer=int sage: n=r_[0.0:5.0] sage: n - array([ 0., 1., 2., 3., 4.]) + array([0., 1., 2., 3., 4.]) sage: n=r_[0.0:5.0, [0.0]*5] sage: n - array([ 0., 1., 2., 3., 4., 0., 0., 0., 0., 0.]) + array([0., 1., 2., 3., 4., 0., 0., 0., 0., 0.]) + :meth:`numpy.r_` provides a shorthand for constructing NumPy arrays efficiently. Note in the above ``0.0:5.0`` was shorthand for ``0.0, 1.0, 2.0, 3.0, 4.0``. @@ -255,7 +256,7 @@ intervals. We can do this as follows :: sage: r_[0.0:5.0:11*j] - array([ 0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. ]) + array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. ]) The notation ``0.0:5.0:11*j`` expands to a list of 11 equally space points between 0 and 5 including both endpoints. Note that ``j`` is the @@ -287,23 +288,23 @@ an equally spaced grid with `\Delta x = \Delta y = .25` for sage: y=numpy.r_[0.0:1.0:5*j] sage: xx,yy= meshgrid(x,y) sage: xx - array([[ 0. , 0.25, 0.5 , 0.75, 1. ], - [ 0. , 0.25, 0.5 , 0.75, 1. ], - [ 0. , 0.25, 0.5 , 0.75, 1. ], - [ 0. , 0.25, 0.5 , 0.75, 1. ], - [ 0. , 0.25, 0.5 , 0.75, 1. ]]) + array([[0. , 0.25, 0.5 , 0.75, 1. ], + [0. , 0.25, 0.5 , 0.75, 1. ], + [0. , 0.25, 0.5 , 0.75, 1. ], + [0. , 0.25, 0.5 , 0.75, 1. ], + [0. , 0.25, 0.5 , 0.75, 1. ]]) sage: yy - array([[ 0. , 0. , 0. , 0. , 0. ], - [ 0.25, 0.25, 0.25, 0.25, 0.25], - [ 0.5 , 0.5 , 0.5 , 0.5 , 0.5 ], - [ 0.75, 0.75, 0.75, 0.75, 0.75], - [ 1. , 1. , 1. , 1. , 1. ]]) + array([[0. , 0. , 0. , 0. , 0. ], + [0.25, 0.25, 0.25, 0.25, 0.25], + [0.5 , 0.5 , 0.5 , 0.5 , 0.5 ], + [0.75, 0.75, 0.75, 0.75, 0.75], + [1. , 1. , 1. , 1. , 1. ]]) sage: f(xx,yy) - array([[ 0. , 0.0625, 0.25 , 0.5625, 1. ], - [ 0.0625, 0.125 , 0.3125, 0.625 , 1.0625], - [ 0.25 , 0.3125, 0.5 , 0.8125, 1.25 ], - [ 0.5625, 0.625 , 0.8125, 1.125 , 1.5625], - [ 1. , 1.0625, 1.25 , 1.5625, 2. ]]) + array([[0. , 0.0625, 0.25 , 0.5625, 1. ], + [0.0625, 0.125 , 0.3125, 0.625 , 1.0625], + [0.25 , 0.3125, 0.5 , 0.8125, 1.25 ], + [0.5625, 0.625 , 0.8125, 1.125 , 1.5625], + [1. , 1.0625, 1.25 , 1.5625, 2. ]]) You can see that :meth:`numpy.meshgrid` produces a pair of matrices, here denoted `xx` and `yy`, such that `(xx[i,j],yy[i,j])` has coordinates @@ -324,7 +325,7 @@ equation `Ax=b` do sage: b=numpy.array(range(1,6)) sage: x=linalg.solve(A,b) sage: numpy.dot(A,x) - array([ 1., 2., 3., 4., 5.]) + array([1., 2., 3., 4., 5.]) This creates a random 5x5 matrix ``A``, and solves `Ax=b` where ``b=[0.0,1.0,2.0,3.0,4.0]``. There are many other routines in the :mod:`numpy.linalg` diff --git a/src/sage/calculus/riemann.pyx b/src/sage/calculus/riemann.pyx index 60f37f7557..4ac3dedf1d 100644 --- a/src/sage/calculus/riemann.pyx +++ b/src/sage/calculus/riemann.pyx @@ -1191,30 +1191,30 @@ cpdef complex_to_spiderweb(np.ndarray[COMPLEX_T, ndim = 2] z_values, sage: zval = numpy.array([[0, 1, 1000],[.2+.3j,1,-.3j],[0,0,0]],dtype = numpy.complex128) sage: deriv = numpy.array([[.1]],dtype = numpy.float64) sage: complex_to_spiderweb(zval, deriv,deriv, 4,4,[0,0,0],1,False,0.001) - array([[[ 1., 1., 1.], - [ 1., 1., 1.], - [ 1., 1., 1.]], + array([[[1., 1., 1.], + [1., 1., 1.], + [1., 1., 1.]], - [[ 1., 1., 1.], - [ 0., 0., 0.], - [ 1., 1., 1.]], + [[1., 1., 1.], + [0., 0., 0.], + [1., 1., 1.]], - [[ 1., 1., 1.], - [ 1., 1., 1.], - [ 1., 1., 1.]]]) + [[1., 1., 1.], + [1., 1., 1.], + [1., 1., 1.]]]) sage: complex_to_spiderweb(zval, deriv,deriv, 4,4,[0,0,0],1,True,0.001) - array([[[ 1. , 1. , 1. ], - [ 1. , 0.05558355, 0.05558355], - [ 0.17301243, 0. , 0. ]], + array([[[1. , 1. , 1. ], + [1. , 0.05558355, 0.05558355], + [0.17301243, 0. , 0. ]], - [[ 1. , 0.96804683, 0.48044583], - [ 0. , 0. , 0. ], - [ 0.77351965, 0.5470393 , 1. ]], + [[1. , 0.96804683, 0.48044583], + [0. , 0. , 0. ], + [0.77351965, 0.5470393 , 1. ]], - [[ 1. , 1. , 1. ], - [ 1. , 1. , 1. ], - [ 1. , 1. , 1. ]]]) + [[1. , 1. , 1. ], + [1. , 1. , 1. ], + [1. , 1. , 1. ]]]) """ cdef Py_ssize_t i, j, imax, jmax cdef FLOAT_T x, y, mag, arg, width, target, precision, dmag, darg @@ -1279,14 +1279,14 @@ cpdef complex_to_rgb(np.ndarray[COMPLEX_T, ndim = 2] z_values): sage: from sage.calculus.riemann import complex_to_rgb sage: import numpy sage: complex_to_rgb(numpy.array([[0, 1, 1000]], dtype = numpy.complex128)) - array([[[ 1. , 1. , 1. ], - [ 1. , 0.05558355, 0.05558355], - [ 0.17301243, 0. , 0. ]]]) + array([[[1. , 1. , 1. ], + [1. , 0.05558355, 0.05558355], + [0.17301243, 0. , 0. ]]]) sage: complex_to_rgb(numpy.array([[0, 1j, 1000j]], dtype = numpy.complex128)) - array([[[ 1. , 1. , 1. ], - [ 0.52779177, 1. , 0.05558355], - [ 0.08650622, 0.17301243, 0. ]]]) + array([[[1. , 1. , 1. ], + [0.52779177, 1. , 0.05558355], + [0.08650622, 0.17301243, 0. ]]]) TESTS:: diff --git a/src/sage/combinat/fully_packed_loop.py b/src/sage/combinat/fully_packed_loop.py index 0a9bd61267..d2193cc2d6 100644 --- a/src/sage/combinat/fully_packed_loop.py +++ b/src/sage/combinat/fully_packed_loop.py @@ -72,11 +72,11 @@ def _make_color_list(n, colors=None, color_map=None, randomize=False): sage: _make_color_list(5, ['blue', 'red']) ['blue', 'red', 'blue', 'red', 'blue'] sage: _make_color_list(5, color_map='summer') - [(0.0, 0.5, 0.40000000000000002), - (0.25098039215686274, 0.62549019607843137, 0.40000000000000002), - (0.50196078431372548, 0.75098039215686274, 0.40000000000000002), - (0.75294117647058822, 0.87647058823529411, 0.40000000000000002), - (1.0, 1.0, 0.40000000000000002)] + [(0.0, 0.5, 0.4), + (0.25098039215686274, 0.6254901960784314, 0.4), + (0.5019607843137255, 0.7509803921568627, 0.4), + (0.7529411764705882, 0.8764705882352941, 0.4), + (1.0, 1.0, 0.4)] sage: _make_color_list(8, ['blue', 'red'], randomize=True) ['blue', 'blue', 'red', 'blue', 'red', 'red', 'red', 'blue'] """ diff --git a/src/sage/finance/time_series.pyx b/src/sage/finance/time_series.pyx index 28779365df..3ab0282861 100644 --- a/src/sage/finance/time_series.pyx +++ b/src/sage/finance/time_series.pyx @@ -111,8 +111,8 @@ cdef class TimeSeries: sage: import numpy sage: v = numpy.array([[1,2], [3,4]], dtype=float); v - array([[ 1., 2.], - [ 3., 4.]]) + array([[1., 2.], + [3., 4.]]) sage: finance.TimeSeries(v) [1.0000, 2.0000, 3.0000, 4.0000] sage: finance.TimeSeries(v[:,0]) @@ -2100,14 +2100,14 @@ cdef class TimeSeries: sage: w[0] = 20 sage: w - array([ 20. , -3. , 4.5, -2. ]) + array([20. , -3. , 4.5, -2. ]) sage: v [20.0000, -3.0000, 4.5000, -2.0000] If you want a separate copy do not give the ``copy=False`` option. :: sage: z = v.numpy(); z - array([ 20. , -3. , 4.5, -2. ]) + array([20. , -3. , 4.5, -2. ]) sage: z[0] = -10 sage: v [20.0000, -3.0000, 4.5000, -2.0000] diff --git a/src/sage/functions/hyperbolic.py b/src/sage/functions/hyperbolic.py index aff552f450..7a6df931e7 100644 --- a/src/sage/functions/hyperbolic.py +++ b/src/sage/functions/hyperbolic.py @@ -214,7 +214,7 @@ class Function_coth(GinacFunction): sage: import numpy sage: a = numpy.arange(2, 5) sage: coth(a) - array([ 1.03731472, 1.00496982, 1.00067115]) + array([1.03731472, 1.00496982, 1.00067115]) """ return 1.0 / tanh(x) @@ -267,7 +267,7 @@ class Function_sech(GinacFunction): sage: import numpy sage: a = numpy.arange(2, 5) sage: sech(a) - array([ 0.26580223, 0.09932793, 0.03661899]) + array([0.26580223, 0.09932793, 0.03661899]) """ return 1.0 / cosh(x) @@ -318,7 +318,7 @@ class Function_csch(GinacFunction): sage: import numpy sage: a = numpy.arange(2, 5) sage: csch(a) - array([ 0.27572056, 0.09982157, 0.03664357]) + array([0.27572056, 0.09982157, 0.03664357]) """ return 1.0 / sinh(x) @@ -586,7 +586,7 @@ class Function_arccoth(GinacFunction): sage: import numpy sage: a = numpy.arange(2,5) sage: acoth(a) - array([ 0.54930614, 0.34657359, 0.25541281]) + array([0.54930614, 0.34657359, 0.25541281]) """ return arctanh(1.0 / x) diff --git a/src/sage/functions/orthogonal_polys.py b/src/sage/functions/orthogonal_polys.py index ed6365bef4..99b8b04dad 100644 --- a/src/sage/functions/orthogonal_polys.py +++ b/src/sage/functions/orthogonal_polys.py @@ -810,12 +810,12 @@ class Func_chebyshev_T(ChebyshevFunction): sage: z2 = numpy.array([[1,2],[1,2]]) sage: z3 = numpy.array([1,2,3.]) sage: chebyshev_T(1,z) - array([ 1., 2.]) + array([1., 2.]) sage: chebyshev_T(1,z2) - array([[ 1., 2.], - [ 1., 2.]]) + array([[1., 2.], + [1., 2.]]) sage: chebyshev_T(1,z3) - array([ 1., 2., 3.]) + array([1., 2., 3.]) sage: chebyshev_T(z,0.1) array([ 0.1 , -0.98]) """ @@ -1095,12 +1095,12 @@ class Func_chebyshev_U(ChebyshevFunction): sage: z2 = numpy.array([[1,2],[1,2]]) sage: z3 = numpy.array([1,2,3.]) sage: chebyshev_U(1,z) - array([ 2., 4.]) + array([2., 4.]) sage: chebyshev_U(1,z2) - array([[ 2., 4.], - [ 2., 4.]]) + array([[2., 4.], + [2., 4.]]) sage: chebyshev_U(1,z3) - array([ 2., 4., 6.]) + array([2., 4., 6.]) sage: chebyshev_U(z,0.1) array([ 0.2 , -0.96]) """ diff --git a/src/sage/functions/other.py b/src/sage/functions/other.py index 1883daa3e6..9885222817 100644 --- a/src/sage/functions/other.py +++ b/src/sage/functions/other.py @@ -389,7 +389,7 @@ class Function_ceil(BuiltinFunction): sage: import numpy sage: a = numpy.linspace(0,2,6) sage: ceil(a) - array([ 0., 1., 1., 2., 2., 2.]) + array([0., 1., 1., 2., 2., 2.]) Test pickling:: @@ -553,7 +553,7 @@ class Function_floor(BuiltinFunction): sage: import numpy sage: a = numpy.linspace(0,2,6) sage: floor(a) - array([ 0., 0., 0., 1., 1., 2.]) + array([0., 0., 0., 1., 1., 2.]) sage: floor(x)._sympy_() floor(x) @@ -869,7 +869,7 @@ def sqrt(x, *args, **kwds): sage: import numpy sage: a = numpy.arange(2,5) sage: sqrt(a) - array([ 1.41421356, 1.73205081, 2. ]) + array([1.41421356, 1.73205081, 2. ]) """ if isinstance(x, float): return math.sqrt(x) diff --git a/src/sage/functions/spike_function.py b/src/sage/functions/spike_function.py index 1e021de3fe..56635ca98f 100644 --- a/src/sage/functions/spike_function.py +++ b/src/sage/functions/spike_function.py @@ -157,7 +157,7 @@ class SpikeFunction: sage: S = spike_function([(-3,4),(-1,1),(2,3)]); S A spike function with spikes at [-3.0, -1.0, 2.0] sage: P = S.plot_fft_abs(8) - sage: p = P[0]; p.ydata + sage: p = P[0]; p.ydata # abs tol 1e-8 [5.0, 5.0, 3.367958691924177, 3.367958691924177, 4.123105625617661, 4.123105625617661, 4.759921664218055, 4.759921664218055] """ w = self.vector(samples = samples, xmin=xmin, xmax=xmax) @@ -176,8 +176,8 @@ class SpikeFunction: sage: S = spike_function([(-3,4),(-1,1),(2,3)]); S A spike function with spikes at [-3.0, -1.0, 2.0] sage: P = S.plot_fft_arg(8) - sage: p = P[0]; p.ydata - [0.0, 0.0, -0.211524990023434..., -0.211524990023434..., 0.244978663126864..., 0.244978663126864..., -0.149106180027477..., -0.149106180027477...] + sage: p = P[0]; p.ydata # abs tol 1e-8 + [0.0, 0.0, -0.211524990023434, -0.211524990023434, 0.244978663126864, 0.244978663126864, -0.149106180027477, -0.149106180027477] """ w = self.vector(samples = samples, xmin=xmin, xmax=xmax) xmin, xmax = self._ranges(xmin, xmax) diff --git a/src/sage/functions/trig.py b/src/sage/functions/trig.py index 501e7ff6b6..5f760912f0 100644 --- a/src/sage/functions/trig.py +++ b/src/sage/functions/trig.py @@ -724,7 +724,7 @@ class Function_arccot(GinacFunction): sage: import numpy sage: a = numpy.arange(2, 5) sage: arccot(a) - array([ 0.46364761, 0.32175055, 0.24497866]) + array([0.46364761, 0.32175055, 0.24497866]) """ return math.pi/2 - arctan(x) @@ -780,7 +780,7 @@ class Function_arccsc(GinacFunction): sage: import numpy sage: a = numpy.arange(2, 5) sage: arccsc(a) - array([ 0.52359878, 0.33983691, 0.25268026]) + array([0.52359878, 0.33983691, 0.25268026]) """ return arcsin(1.0/x) @@ -838,7 +838,7 @@ class Function_arcsec(GinacFunction): sage: import numpy sage: a = numpy.arange(2, 5) sage: arcsec(a) - array([ 1.04719755, 1.23095942, 1.31811607]) + array([1.04719755, 1.23095942, 1.31811607]) """ return arccos(1.0/x) @@ -913,13 +913,13 @@ class Function_arctan2(GinacFunction): sage: a = numpy.linspace(1, 3, 3) sage: b = numpy.linspace(3, 6, 3) sage: atan2(a, b) - array([ 0.32175055, 0.41822433, 0.46364761]) + array([0.32175055, 0.41822433, 0.46364761]) sage: atan2(1,a) - array([ 0.78539816, 0.46364761, 0.32175055]) + array([0.78539816, 0.46364761, 0.32175055]) sage: atan2(a, 1) - array([ 0.78539816, 1.10714872, 1.24904577]) + array([0.78539816, 1.10714872, 1.24904577]) TESTS:: diff --git a/src/sage/matrix/constructor.pyx b/src/sage/matrix/constructor.pyx index 12136f1773..491bf22e62 100644 --- a/src/sage/matrix/constructor.pyx +++ b/src/sage/matrix/constructor.pyx @@ -503,8 +503,8 @@ def matrix(*args, **kwds): [7 8 9] Full MatrixSpace of 3 by 3 dense matrices over Integer Ring sage: n = matrix(QQ, 2, 2, [1, 1/2, 1/3, 1/4]).numpy(); n - array([[ 1. , 0.5 ], - [ 0.33333333, 0.25 ]]) + array([[1. , 0.5 ], + [0.33333333, 0.25 ]]) sage: matrix(QQ, n) [ 1 1/2] [1/3 1/4] diff --git a/src/sage/matrix/matrix_double_dense.pyx b/src/sage/matrix/matrix_double_dense.pyx index 66e54a79a4..0498334f4b 100644 --- a/src/sage/matrix/matrix_double_dense.pyx +++ b/src/sage/matrix/matrix_double_dense.pyx @@ -606,6 +606,9 @@ cdef class Matrix_double_dense(Matrix_dense): [ 3.0 + 9.0*I 4.0 + 16.0*I 5.0 + 25.0*I] [6.0 + 36.0*I 7.0 + 49.0*I 8.0 + 64.0*I] sage: B.condition() + doctest:warning + ... + ComplexWarning: Casting complex values to real discards the imaginary part 203.851798... sage: B.condition(p='frob') 203.851798... @@ -654,9 +657,7 @@ cdef class Matrix_double_dense(Matrix_dense): True sage: B = A.change_ring(CDF) sage: B.condition() - Traceback (most recent call last): - ... - LinAlgError: Singular matrix + +Infinity Improper values of ``p`` are caught. :: @@ -2519,7 +2520,7 @@ cdef class Matrix_double_dense(Matrix_dense): sage: P.is_unitary(algorithm='orthonormal') Traceback (most recent call last): ... - ValueError: failed to create intent(cache|hide)|optional array-- must have defined dimensions but got (0,) + error: ((lwork==-1)||(lwork >= MAX(1,2*n))) failed for 3rd keyword lwork: zgees:lwork=0 TESTS:: @@ -3635,8 +3636,8 @@ cdef class Matrix_double_dense(Matrix_dense): [0.0 1.0 2.0] [3.0 4.0 5.0] sage: m.numpy() - array([[ 0., 1., 2.], - [ 3., 4., 5.]]) + array([[0., 1., 2.], + [3., 4., 5.]]) Alternatively, numpy automatically calls this function (via the magic :meth:`__array__` method) to convert Sage matrices @@ -3647,16 +3648,16 @@ cdef class Matrix_double_dense(Matrix_dense): [0.0 1.0 2.0] [3.0 4.0 5.0] sage: numpy.array(m) - array([[ 0., 1., 2.], - [ 3., 4., 5.]]) + array([[0., 1., 2.], + [3., 4., 5.]]) sage: numpy.array(m).dtype dtype('float64') sage: m = matrix(CDF, 2, range(6)); m [0.0 1.0 2.0] [3.0 4.0 5.0] sage: numpy.array(m) - array([[ 0.+0.j, 1.+0.j, 2.+0.j], - [ 3.+0.j, 4.+0.j, 5.+0.j]]) + array([[0.+0.j, 1.+0.j, 2.+0.j], + [3.+0.j, 4.+0.j, 5.+0.j]]) sage: numpy.array(m).dtype dtype('complex128') diff --git a/src/sage/matrix/special.py b/src/sage/matrix/special.py index ccbd208810..c3f9a65093 100644 --- a/src/sage/matrix/special.py +++ b/src/sage/matrix/special.py @@ -706,7 +706,7 @@ def diagonal_matrix(arg0=None, arg1=None, arg2=None, sparse=True): sage: import numpy sage: entries = numpy.array([1.2, 5.6]); entries - array([ 1.2, 5.6]) + array([1.2, 5.6]) sage: A = diagonal_matrix(3, entries); A [1.2 0.0 0.0] [0.0 5.6 0.0] @@ -716,7 +716,7 @@ def diagonal_matrix(arg0=None, arg1=None, arg2=None, sparse=True): sage: j = numpy.complex(0,1) sage: entries = numpy.array([2.0+j, 8.1, 3.4+2.6*j]); entries - array([ 2.0+1.j , 8.1+0.j , 3.4+2.6j]) + array([2. +1.j , 8.1+0.j , 3.4+2.6j]) sage: A = diagonal_matrix(entries); A [2.0 + 1.0*I 0.0 0.0] [ 0.0 8.1 0.0] diff --git a/src/sage/modules/free_module_element.pyx b/src/sage/modules/free_module_element.pyx index 37d92c1282..955d083b34 100644 --- a/src/sage/modules/free_module_element.pyx +++ b/src/sage/modules/free_module_element.pyx @@ -988,7 +988,7 @@ cdef class FreeModuleElement(Vector): # abstract base class sage: v.numpy() array([1, 2, 5/6], dtype=object) sage: v.numpy(dtype=float) - array([ 1. , 2. , 0.83333333]) + array([1. , 2. , 0.83333333]) sage: v.numpy(dtype=int) array([1, 2, 0]) sage: import numpy @@ -999,7 +999,7 @@ cdef class FreeModuleElement(Vector): # abstract base class be more efficient but may have unintended consequences:: sage: v.numpy(dtype=None) - array([ 1. , 2. , 0.83333333]) + array([1. , 2. , 0.83333333]) sage: w = vector(ZZ, [0, 1, 2^63 -1]); w (0, 1, 9223372036854775807) diff --git a/src/sage/modules/vector_double_dense.pyx b/src/sage/modules/vector_double_dense.pyx index 39fc2970de..2badf98284 100644 --- a/src/sage/modules/vector_double_dense.pyx +++ b/src/sage/modules/vector_double_dense.pyx @@ -807,13 +807,13 @@ cdef class Vector_double_dense(FreeModuleElement): sage: v = vector(CDF,4,range(4)) sage: v.numpy() - array([ 0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]) + array([0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]) sage: v = vector(CDF,0) sage: v.numpy() array([], dtype=complex128) sage: v = vector(RDF,4,range(4)) sage: v.numpy() - array([ 0., 1., 2., 3.]) + array([0., 1., 2., 3.]) sage: v = vector(RDF,0) sage: v.numpy() array([], dtype=float64) @@ -823,11 +823,11 @@ cdef class Vector_double_dense(FreeModuleElement): sage: import numpy sage: v = vector(CDF, 3, range(3)) sage: v.numpy() - array([ 0.+0.j, 1.+0.j, 2.+0.j]) + array([0.+0.j, 1.+0.j, 2.+0.j]) sage: v.numpy(dtype=numpy.float64) - array([ 0., 1., 2.]) + array([0., 1., 2.]) sage: v.numpy(dtype=numpy.float32) - array([ 0., 1., 2.], dtype=float32) + array([0., 1., 2.], dtype=float32) """ if dtype is None or dtype is self._vector_numpy.dtype: from copy import copy diff --git a/src/sage/plot/complex_plot.pyx b/src/sage/plot/complex_plot.pyx index ad9693da62..758fb709b7 100644 --- a/src/sage/plot/complex_plot.pyx +++ b/src/sage/plot/complex_plot.pyx @@ -61,9 +61,9 @@ cdef inline double mag_to_lightness(double r): sage: from sage.plot.complex_plot import complex_to_rgb sage: complex_to_rgb([[0, 1, 10]]) - array([[[ 0. , 0. , 0. ], - [ 0.77172568, 0. , 0. ], - [ 1. , 0.22134776, 0.22134776]]]) + array([[[0. , 0. , 0. ], + [0.77172568, 0. , 0. ], + [1. , 0.22134776, 0.22134776]]]) """ return atan(log(sqrt(r)+1)) * (4/PI) - 1 @@ -82,13 +82,13 @@ def complex_to_rgb(z_values): sage: from sage.plot.complex_plot import complex_to_rgb sage: complex_to_rgb([[0, 1, 1000]]) - array([[[ 0. , 0. , 0. ], - [ 0.77172568, 0. , 0. ], - [ 1. , 0.64421177, 0.64421177]]]) + array([[[0. , 0. , 0. ], + [0.77172568, 0. , 0. ], + [1. , 0.64421177, 0.64421177]]]) sage: complex_to_rgb([[0, 1j, 1000j]]) - array([[[ 0. , 0. , 0. ], - [ 0.38586284, 0.77172568, 0. ], - [ 0.82210588, 1. , 0.64421177]]]) + array([[[0. , 0. , 0. ], + [0.38586284, 0.77172568, 0. ], + [0.82210588, 1. , 0.64421177]]]) """ import numpy cdef unsigned int i, j, imax, jmax diff --git a/src/sage/plot/histogram.py b/src/sage/plot/histogram.py index 5d28473731..fc4b2046c0 100644 --- a/src/sage/plot/histogram.py +++ b/src/sage/plot/histogram.py @@ -53,10 +53,17 @@ class Histogram(GraphicPrimitive): """ import numpy as np self.datalist=np.asarray(datalist,dtype=float) + if 'normed' in options: + from sage.misc.superseded import deprecation + deprecation(25260, "the 'normed' option is deprecated. Use 'density' instead.") if 'linestyle' in options: from sage.plot.misc import get_matplotlib_linestyle options['linestyle'] = get_matplotlib_linestyle( options['linestyle'], return_type='long') + if options.get('range', None): + # numpy.histogram performs type checks on "range" so this must be + # actual floats + options['range'] = [float(x) for x in options['range']] GraphicPrimitive.__init__(self, options) def get_minmax_data(self): @@ -80,10 +87,14 @@ class Histogram(GraphicPrimitive): {'xmax': 4.0, 'xmin': 0, 'ymax': 2, 'ymin': 0} TESTS:: - sage: h = histogram([10,3,5], normed=True)[0] - sage: h.get_minmax_data() # rel tol 1e-15 - {'xmax': 10.0, 'xmin': 3.0, 'ymax': 0.4761904761904765, 'ymin': 0} + doctest:warning...: + DeprecationWarning: the 'normed' option is deprecated. Use 'density' instead. + See https://trac.sagemath.org/25260 for details. + sage: h.get_minmax_data() + doctest:warning ...: + VisibleDeprecationWarning: Passing `normed=True` on non-uniform bins has always been broken, and computes neither the probability density function nor the probability mass function. The result is only correct if the bins are uniform, when density=True will produce the same result anyway. The argument will be removed in a future version of numpy. + {'xmax': 10.0, 'xmin': 3.0, 'ymax': 0.476190476190..., 'ymin': 0} """ import numpy @@ -152,7 +163,7 @@ class Histogram(GraphicPrimitive): 'rwidth': 'The relative width of the bars as a fraction of the bin width', 'cumulative': '(True or False) If True, then a histogram is computed in which each bin gives the counts in that bin plus all bins for smaller values. Negative values give a reversed direction of accumulation.', 'range': 'A list [min, max] which define the range of the histogram. Values outside of this range are treated as outliers and omitted from counts.', - 'normed': 'Deprecated alias for density', + 'normed': 'Deprecated. Use density instead.', 'density': '(True or False) If True, the counts are normalized to form a probability density. (n/(len(x)*dbin)', 'weights': 'A sequence of weights the same length as the data list. If supplied, then each value contributes its associated weight to the bin count.', 'stacked': '(True or False) If True, multiple data are stacked on top of each other.', @@ -199,7 +210,7 @@ class Histogram(GraphicPrimitive): subplot.hist(self.datalist.transpose(), **options) -@options(aspect_ratio='automatic',align='mid', weights=None, range=None, bins=10, edgecolor='black') +@options(aspect_ratio='automatic', align='mid', weights=None, range=None, bins=10, edgecolor='black') def histogram(datalist, **options): """ Computes and draws the histogram for list(s) of numerical data. @@ -231,8 +242,9 @@ def histogram(datalist, **options): - ``linewidth`` -- (float) width of the lines defining the bars - ``linestyle`` -- (default: 'solid') Style of the line. One of 'solid' or '-', 'dashed' or '--', 'dotted' or ':', 'dashdot' or '-.' - - ``density`` -- (boolean - default: False) If True, the counts are - normalized to form a probability density. + - ``density`` -- (boolean - default: False) If True, the result is the + value of the probability density function at the bin, normalized such + that the integral over the range is 1. - ``range`` -- A list [min, max] which define the range of the histogram. Values outside of this range are treated as outliers and omitted from counts diff --git a/src/sage/plot/line.py b/src/sage/plot/line.py index 23f5e61446..3b1b51d7cf 100644 --- a/src/sage/plot/line.py +++ b/src/sage/plot/line.py @@ -502,14 +502,12 @@ def line2d(points, **options): from sage.plot.all import Graphics from sage.plot.plot import xydata_from_point_list from sage.rings.all import CC, CDF + points = list(points) # make sure points is a python list if points in CC or points in CDF: pass else: - try: - if not points: - return Graphics() - except ValueError: # numpy raises a ValueError if not empty - pass + if len(points) == 0: + return Graphics() xdata, ydata = xydata_from_point_list(points) g = Graphics() g._set_extra_kwds(Graphics._extract_kwds_for_show(options)) diff --git a/src/sage/plot/plot_field.py b/src/sage/plot/plot_field.py index 0025098a8d..23c80902f3 100644 --- a/src/sage/plot/plot_field.py +++ b/src/sage/plot/plot_field.py @@ -49,9 +49,10 @@ class PlotField(GraphicPrimitive): sage: r.xpos_array [0.0, 0.0, 1.0, 1.0] sage: r.yvec_array - masked_array(data = [0.0 0.70710678118... 0.70710678118... 0.89442719...], - mask = [False False False False], - fill_value = 1e+20) + masked_array(data=[0.0, 0.70710678118..., 0.70710678118..., + 0.89442719...], + mask=[False, False, False, False], + fill_value=1e+20) TESTS: diff --git a/src/sage/plot/streamline_plot.py b/src/sage/plot/streamline_plot.py index f3da57c370..3806f4b32f 100644 --- a/src/sage/plot/streamline_plot.py +++ b/src/sage/plot/streamline_plot.py @@ -38,16 +38,14 @@ class StreamlinePlot(GraphicPrimitive): sage: r.options()['plot_points'] 2 sage: r.xpos_array - array([ 0., 1.]) + array([0., 1.]) sage: r.yvec_array - masked_array(data = - [[1.0 1.0] - [0.5403023058681398 0.5403023058681398]], - mask = - [[False False] - [False False]], - fill_value = 1e+20) - + masked_array( + data=[[1.0, 1.0], + [0.5403023058681398, 0.5403023058681398]], + mask=[[False, False], + [False, False]], + fill_value=1e+20) TESTS: diff --git a/src/sage/probability/probability_distribution.pyx b/src/sage/probability/probability_distribution.pyx index 1b119e323f..3290b00695 100644 --- a/src/sage/probability/probability_distribution.pyx +++ b/src/sage/probability/probability_distribution.pyx @@ -130,7 +130,17 @@ cdef class ProbabilityDistribution: 0.0, 1.4650000000000003] sage: b - [0.0, 0.20000000000000001, 0.40000000000000002, 0.60000000000000009, 0.80000000000000004, 1.0, 1.2000000000000002, 1.4000000000000001, 1.6000000000000001, 1.8, 2.0] + [0.0, + 0.2, + 0.4, + 0.6000000000000001, + 0.8, + 1.0, + 1.2000000000000002, + 1.4000000000000001, + 1.6, + 1.8, + 2.0] """ import pylab l = [float(self.get_random_element()) for _ in range(num_samples)] diff --git a/src/sage/rings/rational.pyx b/src/sage/rings/rational.pyx index 12ca1b222b..9bad7dae0c 100644 --- a/src/sage/rings/rational.pyx +++ b/src/sage/rings/rational.pyx @@ -1041,7 +1041,7 @@ cdef class Rational(sage.structure.element.FieldElement): dtype('O') sage: numpy.array([1, 1/2, 3/4]) - array([ 1. , 0.5 , 0.75]) + array([1. , 0.5 , 0.75]) """ if mpz_cmp_ui(mpq_denref(self.value), 1) == 0: if mpz_fits_slong_p(mpq_numref(self.value)): diff --git a/src/sage/rings/real_mpfr.pyx b/src/sage/rings/real_mpfr.pyx index 9b90c8833e..1ce05b937d 100644 --- a/src/sage/rings/real_mpfr.pyx +++ b/src/sage/rings/real_mpfr.pyx @@ -1439,7 +1439,7 @@ cdef class RealNumber(sage.structure.element.RingElement): sage: import numpy sage: numpy.arange(10.0) - array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.]) + array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.]) sage: numpy.array([1.0, 1.1, 1.2]).dtype dtype('float64') sage: numpy.array([1.000000000000000000000000000000000000]).dtype diff --git a/src/sage/schemes/elliptic_curves/height.py b/src/sage/schemes/elliptic_curves/height.py index de31fe9883..7a33ea6f5b 100644 --- a/src/sage/schemes/elliptic_curves/height.py +++ b/src/sage/schemes/elliptic_curves/height.py @@ -1627,18 +1627,18 @@ class EllipticCurveCanonicalHeight: even:: sage: H.wp_on_grid(v,4) - array([[ 25.43920182, 5.28760943, 5.28760943, 25.43920182], - [ 6.05099485, 1.83757786, 1.83757786, 6.05099485], - [ 6.05099485, 1.83757786, 1.83757786, 6.05099485], - [ 25.43920182, 5.28760943, 5.28760943, 25.43920182]]) + array([[25.43920182, 5.28760943, 5.28760943, 25.43920182], + [ 6.05099485, 1.83757786, 1.83757786, 6.05099485], + [ 6.05099485, 1.83757786, 1.83757786, 6.05099485], + [25.43920182, 5.28760943, 5.28760943, 25.43920182]]) The array of values on the half-grid:: sage: H.wp_on_grid(v,4,True) - array([[ 25.43920182, 5.28760943], - [ 6.05099485, 1.83757786], - [ 6.05099485, 1.83757786], - [ 25.43920182, 5.28760943]]) + array([[25.43920182, 5.28760943], + [ 6.05099485, 1.83757786], + [ 6.05099485, 1.83757786], + [25.43920182, 5.28760943]]) """ tau = self.tau(v) fk, err = self.fk_intervals(v, 15, CDF) diff --git a/src/sage/symbolic/ring.pyx b/src/sage/symbolic/ring.pyx index 9da38002e8..d61e74bf82 100644 --- a/src/sage/symbolic/ring.pyx +++ b/src/sage/symbolic/ring.pyx @@ -1136,7 +1136,7 @@ cdef class NumpyToSRMorphism(Morphism): sage: cos(numpy.int('2')) cos(2) sage: numpy.cos(numpy.int('2')) - -0.41614683654714241 + -0.4161468365471424 """ cdef _intermediate_ring