In combination with carnix we can now build crates that require a
specific edition of rust features. A few crates started requiring that
already and having this in nixpkgs is just logical.
This patch preserves the ordering of layers of a parent image when the
new image is packed.
It is currently not the case: layers are stacked in the reverse order.
Fixes#55290
This round is without the systemd CVE,
as we don't have binaries for that yet.
BTW, I just ignore darwin binaries these days,
as I'd have to wait for weeks for them.
Emacs loads all the elisp files in the top-level of the site-lisp
directory. However some packages (e.g. mu4e) put their elisp files in a
subdirectory of site-lisp. Emacs will not load these packages unless
subdirs.el is present.
This commit links the subdirs.el file from the emacs package into the
emacs-package-deps package so that packages that put their elisp files
in a subdirectory of site-lisp are loaded.
Comments on conflicts:
- llvm: d6f401e1 vs. 469ecc70 - docs for 6 and 7 say the default is
to build all targets, so we should be fine
- some pypi hashes: they were equivalent, just base16 vs. base32
Unless dontWrapGapps is set, the wrap-gapps-hook.sh will currently
wrap all executables (and symbolic links to executables) found under
the target directories: bin and libexec.
As a result, if a symbolic link in a target directory points to an
executable in a target directory, both will get wrapped. This
causes an extra shell/exec when following the symbolic link,
as well as increasing the size of the final executable's environment.
To avoid wrapping a link to an already wrapped executable, this
commit splits the determination of what gets wrapped into two phases:
1. All binaries under the target directories are wrapped and logged
with "Wrapping program ..."
2. All links to executables under the target directories are
identified and checked to see if they reference an executable
under one of the target directories.
If yes, the required wrapping has already been performed on
the associated binary (in phase 1), so no wrapping is done
and "Not wrapping link: ... (already wrapped)" is logged.
If no, the link points at an executable that hasn't been
wrapped, so the link is wrapped and "Wrapping link: ..." is logged.
As an example, the yelp package has a bin directory that contains
an executable "yelp" and a symbolic link "gnome-help" -> "yelp".
Prior to this commit, the bin directory would contain these files
after wrapping:
gnome-help -- wrapper to exec .gnome-help-wrapped
.gnome-help-wrapped -- a symbolic link to yelp
yelp -- wrapper to exec .yelp-wrapped
.yelp-wrapped -- the original yelp binary
After this commit, the bin directory will instead contain:
gnome-help -- a symbolic link to yelp
yelp -- wrapper to exec .yelp-wrapped
.yelp-wrapped -- the original yelp binary
NOTE: The primary motivation for this commit is to avoid obscuring
the fact that two or more paths are simple aliases and expected to
behave identically. It also reduces the likelihood of hitting
limits related to environment variable size.
LIMITATION: The method used above is intended to be conservative
and will still wrap symbolic links to other symbolic links when
the ultimate target is outside of bin or libexec.
There is a function params `kernel' intended to specify which kernel to use.
It defaults to `pkgs.linux`.
But when we override `kernel', compiling and using two kernels seems not to be the intendend bevavior.
clang needs to find headers + libraries for compiling with libc++. We
need to add a libcxx argument to cc-wrapper. This means you do not
have to pass in c++ headers directly.
This resolves the last case remaining of #30670. Darwin clang++ now
works properly.
Fixes#30670
This is useful when running tools like NixOps or nix-review
on workstations where the upload to the builder is significantly
slower then downloading the source on the builder itself.
* add generic x86_32 support
- Add support for i386-i586.
- Add `isx86_32` predicate that can replace most uses of `isi686`.
- `isi686` is reinterpreted to mean "exactly i686 arch, and not say i585 or i386".
- This branch was used to build working i586 kernel running on i586 hardware.
* revert `isi[345]86`, remove dead code
- Remove changes to dead code in `doubles.nix` and `for-meta.nix`.
- Remove `isi[345]86` predicates since other cpu families don't have specific model predicates.
* remove i386-linux since linux not supported on that cpu
* fetchurl: fix and add extra KDE mirrors (#51480)
- The gwdg.de mirror has moved the relative path of its KDE tarballs
- Add new mirrors from Berkeley and MIT, which are on the list of officially supported mirrors
https://download.kde.org/extra/download-mirrors.html
* More KDE mirror touchups
- The official one is a redirect to HTTPS anyways, so go directly to HTTPS
- Add China USTC for Asian users
- Swap Finland university from FTP to HTTP
* fetchurl: keep one ftp KDE mirror
Docker images used to be, essentially, a linked list of layers. Each
layer would have a tarball and a json document pointing to its parent,
and the image pointed to the top layer:
imageA ----> layerA
|
v
layerB
|
v
layerC
The current image spec changed this format to where the Image defined
the order and set of layers:
imageA ---> layerA
|--> layerB
`--> layerC
For backwards compatibility, docker produces images which follow both
specs: layers point to parents, and images also point to the entire
list:
imageA ---> layerA
| |
| v
|--> layerB
| |
| v
`--> layerC
This is nice for tooling which supported the older version and never
updated to support the newer format.
Our `buildImage` code only supported the old version, so in order for
`buildImage` to properly generate an image based on another image
with `fromImage`, the parent image's layers must fully support the old
mechanism.
This is not a problem in general, but is a problem with
`buildLayeredImage`.
`buildLayeredImage` creates images with newer image spec, because
individual store paths don't have a guaranteed parent layer. Including
a specific parent ID in the layer's json makes the output less likely
to cache hit when published or pulled.
This means until now, `buildLayeredImage` could not be the input to
`buildImage`.
The changes in this PR change `buildImage` to only use the layer's
manifest when locating parent IDs. This does break buildImage on
extremely old Docker images, though I do wonder how many of these
exist.
This work has been sponsored by Target.