This has two main benefits:
* GHC will work reliably outside of stdenv, even when using -fllvm since
everything it'll call at runtime will be provided in PATH via the
wrapper scripts.
* LLVM will no longer leak into haskell packages' configure
scripts. This was an issue with llvm-hs which fails to build if the
LLVM version of the compiler since the propagatedBuildInputs of GHC
take precedence over the nativeBuildInputs added in the derivation.
This brings the binary GHCs on parity with the source built ones in
terms of the wrapper. The upshot of this is that compiling something
using the binary GHCs no longer depends on PATH being populated with
the tools included in stdenv at all. We can even test this by running
the installCheck with an empty environment (via `env -i`).
Copy the approach from the normal GHC derivations for adding an
`export PATH` into the scripts in `$out/bin` and use it to put the
specific LLVM version of the binary GHC into its PATH. This will
prevent the LLVM version of the GHC we are building later to take
precedence over the LLVM version this GHC needs.
Since we inherit the platform list from the bootstrap GHC, we get
differing lists depending on which platform we evaluate the platform
list on (depending on whether 8.10.2 or 8.6.5 is used). This leads to
Hydra thinking aarch64-linux is not supported as it evaluates on
x86_64-linux usually.
Since LLVM itself doesn't depend on target at all, this doesn't change
anything *in effect* (i. e. rebuild count should be zero), but it is
more clear about the intention and what LLVM is used for here (i. e. in
depsBuildTarget).
This means we only have to update the llvmPackages attribute in one
place now and should prevent situations like with 8.6.5 where different
versions would be used in the package set compared to the compiler
build.
Drop comments in the configuration-ghc-X.Y.x.nix files as well, since
LLVM version isn't tied to the compiler minor version at
all (e. g. 8.10.2 and 8.10.7 have different support ranges).
Reverse bootstrapping is not supported by GHC upstream. In the case of
8.8.4 it just happens to work using 8.10.2, with later versions,
specifically 8.10.7 there seems to be some digressions in the generated /
used C code which cause 8.8.4 to fail to compile [1].
Thus we revert to using 8.10.2 for aarch64 and Musl which means: Still
no integer-simple and musl at the same time (however all other GHCs have
it, so it's probably not a problem) and no aarch64-darwin (GHC 8.8.4
can't target that architecture anyways). In short, the situation stays
the same.
[1]: https://github.com/NixOS/nixpkgs/pull/138523#issuecomment-927339953
When debugging musl builds, I often have to sift through thousands of lines
of `nix-store -q --tree` or `nix-store -qR` output.
Until now, `pkgsMusl` and normal `pkgs` GHCs looked exactly the same in
there, making that task tough.
Same for `integer-simple`, which makes debugging `gmp` issues easier.
This commit introduces a suffix to tell them apart easily.
Note that this is different from `targetPrefix` which is for
cross-compilation, which `pkgsMusl` does not do.
For GHC HEAD, integer-simple no longer exists, instead we now have a
“bignum backend”, so we just call the integer-simple successor
native-bignum.
Co-Authored-By: sternenseemann <sternenseemann@systemli.org>
GHC HQ switched the musl bindists from gmp to `integer-simple`
with GHC >= 8.10.6, but this was not reflected in the nixpkgs update:
* commit 6f1242469a: ghc: 8.10.5-binary -> 8.10.7-binary
From PR #135453
See also #130441.
Conflicts:
pkgs/development/compilers/ghc/8.10.7.nix
pkgs/development/compilers/ghc/8.8.4.nix
I've removed the isWindows check from useLdGold in ghc, since that should
be covered by the new hasGold check.
Let's remove peti (retired) as well Marc, Andres and Will who haven't
been active lately. Feel free to re-add yourself, but this should at
least lessen the GitHub notifications for now.
Add lib.teams.haskell to every maintainer list additionally. I've also
added Domen and Pavol to GHC 8.10.7 binary since they are the only ones
working on aarch64-darwin so far. Let me know if that is alright with
you.
Seems like there is either a fundamental issue with how our derivation
works or an upstream bug prevent GHC 9.2.1 from compiling on macOS using
nixpkgs. Until someone fixes that or rc2 comes around, we can save the
build time.
GHC 8.8.4 seems to be quite susceptible to flaky build failures when
using more cores. Since we don't care about speed too much with this
one, let's disable big-parallel again.
GHC 9.2.1-rc1 needs to run xattr in ghc.mk unconditionally. The fix for
this and support for the XATTR environment variable have only been added
to the GHC 8.10 series so far.
Compiling GHC on Hydra takes 3h or more (with -j2) whereas even on an
outdated CPU GHC can be compiled in under an hour with -j4. To get a
higher NIX_BUILD_CORES value at build time, we'll have to mark GHC
big-parallel.