newlib is the default for most tools when no kernel is provided. Other
exist, but this seems like a safe default.
(cherry picked from commit 8009c20711)
This reverts commit ce2f74df2c.
Doubles are treated as -darwin here, to provide some consistency.
There is some ambiguity between “x86_64-darwin” and “i686-darwin”
which could refer to binaries linked between iOS simulator or real
macOS binaries. useiOSPrebuilt can be used to determine which to use,
however.
This makes things a little bit more convenient. Just pass in like:
$ nix-build ’<nixpkgs>’ -A hello --argstr localSystem x86_64-linux --argstr crossSystem aarch64-linux
Adds pkgsCross.wasm32 and pkgsCross.wasm64. Use it to build Nixpkgs
with a WebAssembly toolchain.
stdenv/cross: use static overlay on isWasm
isWasm doesn’t make sense dynamically linked.
It is useful to make these dynamic and not bake them into gcc. This
means we don’t have to rebuild gcc to change these values. Instead, we
will pass cflags to gcc based on platform values. This was already
done hackily for android gcc (which is multi-target), but not for our
own gccs which are single target.
To accomplish this, we need to add a few things:
- add ‘arch’ to cpu
- add NIX_CFLAGS_COMPILE_BEFORE flag (goes before args)
- set -march everywhere
- set mcpu, mfpu, mmode, and mtune based on targetPlatform.gcc flags
cc-wrapper: only set -march when it is in the cpu type
Some architectures don’t have a good mapping of -march. For instance
POWER architecture doesn’t support the -march flag at all!
https://gcc.gnu.org/onlinedocs/gcc/RS_002f6000-and-PowerPC-Options.html#RS_002f6000-and-PowerPC-Options
This makes us less reliant on the systems/examples.nix. You should be
able to cross compile with just your triple:
$ nix build --arg crossSystem '{ config = "armv6l-unknown-linux-gnueabi"; }' stdenv
ppc64le and ppc64 are different targets in the configure script. We
can’t use the same one.
TODO: canonicalize similar ones based on qemu’s configure script.
New android ndk (18) now uses clang. We were going through the wrapper
that are provided. This lead to surprising errors when building.
Ideally we could use the llvm linker as well, but this leads to errors
as many packages don’t support the llvm linker.
Comments on conflicts:
- llvm: d6f401e1 vs. 469ecc70 - docs for 6 and 7 say the default is
to build all targets, so we should be fine
- some pypi hashes: they were equivalent, just base16 vs. base32
* add generic x86_32 support
- Add support for i386-i586.
- Add `isx86_32` predicate that can replace most uses of `isi686`.
- `isi686` is reinterpreted to mean "exactly i686 arch, and not say i585 or i386".
- This branch was used to build working i586 kernel running on i586 hardware.
* revert `isi[345]86`, remove dead code
- Remove changes to dead code in `doubles.nix` and `for-meta.nix`.
- Remove `isi[345]86` predicates since other cpu families don't have specific model predicates.
* remove i386-linux since linux not supported on that cpu
eabihf is an abi that can be used with ARM architectures that support
the “hard float”. It should probably only be used with ARM32 when you
are absolutely sure your binaries will run on ARM systems with a FPU.
Also, add an example "armhf-embedded" to match the preexisting
arm-embedded system. qmk_firmware needs hard float in a few places, so
add them here to get that to work.
Fixes#51184
You can use stdenv.hostPlatform.emulator to get an executable that
runs cross-built binaries. This could be any emulator. For instance,
we use QEMU to emulate Linux targets and Wine to emulate Windows
targets. To work with qemu, we need to support custom targets.
I’ve reworked the cross tests in pkgs/test/cross to use this
functionality.
Also, I’ve used talloc to cross-execute with the emulator. There
appears to be a cross-execute for all waf builds. In the future, it
would be nice to set this for all waf builds.
Adds stdenv.hostPlatform.qemuArch attrbute to get the qemuArch for
each platform.
- respect libc’s incdir and libdir
- make non-unix systems single threaded
- set LIMITS_H_TEST to false for avr
- misc updates to support new libc’s
- use multilib with avr
For threads we want to use:
- posix on unix systems
- win32 on windows
- single on everything else
For avr:
- add library directories for avrlibc
- to disable relro and bind
- avr5 should have precedence over avr3 - otherwise gcc uses the wrong one
This has been not touched in 6 years. Let's remove it to cause less
problems when adding new cross-compiling infrastructure.
This also simplify gcc significantly.
binutils expects x86_64-unknown-netbsd<version> (only 3 parts!). Any other combo seems to fail.
Also handle darwin versions similarly.
/cc @Ericson2314
It wasn’t exactly clear which NDK you were using previously. This adds
an attribute to system that handles what version of the NDK we should
use when building things.
/cc @Ericson2314
In particular, now the mainline kernel can be built on the RPi 1 as well
(so kernelBaseConfig should always be a mainline defconfig from now on).
And RPi 2 users can now use linux_rpi without doing the
`nixpkgs.config.platform = lib.systems.platforms.raspberrypi2;` dance.
There are two different official variations which differ in their float
support, so such a blanket statement is invalid.
`lib.systems.platforms.*android` already handles each case correctly.
Correcting an error in 827ef09140.
ARM ABIs now have a float field. This is used as a fallback to lessen
our use of `platform.gcc.float`. I didn't know what the MIPs convention
is so I kept using `platform.gcc.float` in that case.
The commented-out configs are @shlevy's old known-good ones. I changed
them as needed to play nice with lib.systems.parse but did not test so
leaving them as comments for now.
Following legacy packing conventions, `isArm` was defined just for
32-bit ARM instruction set. This is confusing to non packagers though,
because Aarch64 is an ARM instruction set.
The official ARM overview for ARMv8[1] is surprisingly not confusing,
given the overall state of affairs for ARM naming conventions, and
offers us a solution. It divides the nomenclature into three levels:
```
ISA: ARMv8 {-A, -R, -M}
/ \
Mode: Aarch32 Aarch64
| / \
Encoding: A64 A32 T32
```
At the top is the overall v8 instruction set archicture. Second are the
two modes, defined by bitwidth but differing in other semantics too, and
buttom are the encodings, (hopefully?) isomorphic if they encode the
same mode.
The 32 bit encodings are mostly backwards compatible with previous
non-Thumb and Thumb encodings, and if so we can pun the mode names to
instead mean "sets of compatable or isomorphic encodings", and then
voilà we have nice names for 32-bit and 64-bit arm instruction sets
which do not use the word ARM so as to not confused either laymen or
experienced ARM packages.
[1]: https://developer.arm.com/products/architecture/a-profile
(cherry picked from commit ba52ae5048)