3
0
Fork 0
forked from mirrors/nixpkgs

Merge pull request #208478 from trofi/comment-stdenv-bootstrap

stdenv/linux: document some tips in debugging stdenv bootstrap tower
This commit is contained in:
John Ericson 2023-01-02 17:28:43 -05:00 committed by GitHub
commit a6b1de7902
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -1,8 +1,61 @@
# This file constructs the standard build environment for the
# Linux/i686 platform. It's completely pure; that is, it relies on no
# Linux platform. It's completely pure; that is, it relies on no
# external (non-Nix) tools, such as /usr/bin/gcc, and it contains a C
# compiler and linker that do not search in default locations,
# ensuring purity of components produced by it.
#
# It starts from prebuilt seed bootstrapFiles and creates a series of
# nixpkgs instances (stages) to gradually rebuild stdenv, which
# is used to build all other packages (including the bootstrapFiles).
#
# Goals of the bootstrap process:
# 1. final stdenv must not reference any of the bootstrap files.
# 2. final stdenv must not contain any of the bootstrap files
# (the only current violation is libgcc_s.so in glibc).
# 3. final stdenv must not contain any of the files directly
# generated by the bootstrap code generators (assembler, linker,
# compiler). The only current violations are: libgcc_s.so in glibc,
# the lib{mpfr,mpc,gmp,isl} which are statically linked
# into the final gcc).
#
# These goals ensure that final packages and final stdenv are built
# exclusively using nixpkgs package definitions and don't depend
# on bootstrapTools (via direct references, inclusion
# of copied code, or code compiled directly by bootstrapTools).
#
# Stages are described below along with their definitions.
#
# Debugging stdenv dependency graph:
# An useful tool to explore dependencies across stages is to use
# '__bootPackages' attribute of 'stdenv. Examples of last 3 stages:
# - stdenv
# - stdenv.__bootPackages.stdenv
# - stdenv.__bootPackages.stdenv.__bootPackages.stdenv
# - ... and so on.
#
# To explore build-time dependencies in graphical form one can use
# the following:
# $ nix-store --query --graph $(nix-instantiate -A stdenv) |
# grep -P -v '[.]sh|[.]patch|bash|[.]tar' | # avoid clutter
# dot -Tsvg > stdenv-final.svg
#
# To find all the packages built by a particular stdenv instance:
# $ for stage in 0 1 2 3 4; do
# echo "stage${stage} used in:"
# nix-store --query --graph $(nix-instantiate -A stdenv) |
# grep -P ".*bootstrap-stage${stage}-stdenv.*->.*" |
# sed 's/"[0-9a-z]\{32\}-/"/g'
# done
#
# To verify which stdenv was used to build a given final package:
# $ nix-store --query --graph $(nix-instantiate -A stdenv) |
# grep -P -v '[.]sh|[.]patch|bash|[.]tar' |
# grep -P '.*stdenv.*->.*glibc-2'
# "...-bootstrap-stage2-stdenv-linux.drv" -> "...-glibc-2.35-224.drv";
#
# For a TUI (rather than CLI) view, you can use:
#
# $ nix-tree --derivation $(nix-instantiate -A stdenv)
{ lib
, localSystem, crossSystem, config, overlays, crossOverlays ? []
@ -147,6 +200,9 @@ in
# Build a dummy stdenv with no GCC or working fetchurl. This is
# because we need a stdenv to build the GCC wrapper and fetchurl.
#
# resulting stage0 stdenv:
# - coreutils, binutils, glibc, gcc: from bootstrapFiles
(prevStage: stageFun prevStage {
name = "bootstrap-stage0";
@ -202,6 +258,9 @@ in
# If we ever need to use a package from more than one stage back, we
# simply re-export those packages in the middle stage(s) using the
# overrides attribute and the inherit syntax.
#
# resulting stage1 stdenv:
# - coreutils, binutils, glibc, gcc: from bootstrapFiles
(prevStage: stageFun prevStage {
name = "bootstrap-stage1";
@ -228,6 +287,10 @@ in
# 2nd stdenv that contains our own rebuilt binutils and is used for
# compiling our own Glibc.
#
# resulting stage2 stdenv:
# - coreutils, glibc, gcc: from bootstrapFiles
# - binutils: from nixpkgs, built by bootstrapFiles toolchain
(prevStage: stageFun prevStage {
name = "bootstrap-stage2";
@ -296,6 +359,10 @@ in
# Construct a third stdenv identical to the 2nd, except that this
# one uses the rebuilt Glibc from stage2. It still uses the recent
# binutils and rest of the bootstrap tools, including GCC.
#
# resulting stage3 stdenv:
# - coreutils, gcc: from bootstrapFiles
# - glibc, binutils: from nixpkgs, built by bootstrapFiles toolchain
(prevStage: stageFun prevStage {
name = "bootstrap-stage3";
@ -332,6 +399,17 @@ in
# Construct a fourth stdenv that uses the new GCC. But coreutils is
# still from the bootstrap tools.
#
# resulting stage4 stdenv:
# - coreutils: from bootstrapFiles
# - glibc, binutils: from nixpkgs, built by bootstrapFiles toolchain
# - gcc: from nixpkgs, built by bootstrapFiles toolchain. Can assume
# it has almost no code from bootstrapTools as gcc bootstraps
# internally. The only exceptions are crt files from glibc
# built by bootstrapTools used to link executables and libraries,
# and the bootstrapTools-built, statically-linked
# lib{mpfr,mpc,gmp,isl}.a which are linked into the final gcc
# (see commit cfde88976ba4cddd01b1bb28b40afd12ea93a11d).
(prevStage: stageFun prevStage {
name = "bootstrap-stage4";
@ -388,6 +466,17 @@ in
# When updating stdenvLinux, make sure that the result has no
# dependency (`nix-store -qR') on bootstrapTools or the first
# binutils built.
#
# resulting stage5 (final) stdenv:
# - coreutils, binutils: from nixpkgs, built by nixpkgs toolchain
# - glibc: from nixpkgs, built by bootstrapFiles toolchain
# - gcc: from nixpkgs, built by bootstrapFiles toolchain. Can assume
# it has almost no code from bootstrapTools as gcc bootstraps
# internally. The only exceptions are crt files from glibc
# built by bootstrapTools used to link executables and libraries,
# and the bootstrapTools-built, statically-linked
# lib{mpfr,mpc,gmp,isl}.a which are linked into the final gcc
# (see commit cfde88976ba4cddd01b1bb28b40afd12ea93a11d).
(prevStage: {
inherit config overlays;
stdenv = import ../generic rec {